Time Series Analysis

Höfundur James D. Hamilton

Útgefandi Princeton University Press

Snið Page Fidelity

Print ISBN 9780691042893

Útgáfa 0

Útgáfuár 1994

17.890 kr.

Description

Efnisyfirlit

  • Half-title Page
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • 1 Difference Equations
  • 1.1. First-Order Difference Equations
  • 1.2. pth-Order Difference Equations
  • Appendix l.A. Proofs of Chapter 1 Propositions
  • References
  • 2. Lag Operators
  • 2.1. Introduction
  • 2.2. First-Order Difference Equations
  • 2.3. Second-Order Difference Equations
  • 2.4. pth-Order Difference Equations
  • 2.5. Initial Conditions and Unbounded Sequences
  • References
  • 3. Stationary ARMA Processes
  • 3.1. Expectations, Stationarity, and Ergodicity
  • 3.2. White Noise
  • 3.3. Moving Average Processes
  • 3.4. Autoregressive Processes
  • 3.5. Mixed Autoregressive Moving Average Processes
  • 3.6. The Autocovariance-Generating Function
  • 3.7. Invertibility
  • Appendix 3.A. Convergence Results for Infinite-Order Moving Average Processes
  • Exercises
  • References
  • 4. Forecasting
  • 4.1. Principles of Forecasting
  • 4.2. Forecasts Based on an Infinite Number of Observations
  • 4.3. Forecasts Based on a Finite Number of Observations
  • 4.4. The Triangular Factorization of a Positive Definite Symmetric Matrix
  • 4.5. Updating a Linear Projection
  • 4.6. Optimal Forecasts for Gaussian Processes
  • 4.7. Sums of ARMA Processes
  • 4.8. Wold’s Decomposition and the Box-Jenkins Modeling Philosophy
  • Appendix 4.A. Parallel Between OLS Regression and Linear Projection
  • Appendix 4.B. Triangular Factorization of the Covariance Matrix for an MA(1) Process
  • Exercises
  • References
  • 5. Maximum Likelihood Estimation
  • 5.1. Introduction
  • 5.2. The Likelihood Function for a Gaussian AR() Process
  • 5.3. The Likelihood Function for a Gaussian AR(p) Process
  • 5.4. The Likelihood Function for a Gaussian MA(l) Process
  • 5.5. The Likelihood Function for a Gaussian MA(q) Process
  • 5.6. The Likelihood Function for a Gaussian ARMA(p,q) Process
  • 5.7. Numerical Optimization
  • 5.8. Statistical Inference with Maximum Likelihood Estimation
  • 5.9. Inequality Constraints
  • Appendix 5.A. Proofs of Chapter 5 Propositions
  • Exercises
  • References
  • 6. Spectral Analysis
  • 6.1. The Population Spectrum
  • 6.2. The Sample Periodogram
  • 6.3. Estimating the Population Spectrum
  • 6.4. Uses of Spectral Analysis
  • Appendix 6.A. Proofs of Chapter 6 Propositions
  • Exercises
  • References
  • 7. Asymptotic Distribution Theory
  • 7.1. Review of Asymptotic Distribution Theory
  • 7.2. Limit Theorems for Serially Dependent Observations
  • Appendix 7. A. Proofs of Chapter 7 Propositions
  • Exercises
  • References
  • 8. Linear Regression Models
  • 8.1. Review of Ordinary Least Squares with Deterministic Regressors and i.i.d. GaussianDisturbances
  • 8.2. Ordinary Least Squares Under More General Conditions
  • 8.3. Generalized Least Squares
  • Appendix 8. A. Proofs of Chapter 8 Propositions
  • Exercises
  • References
  • 9. Linear Systems of Simultaneous Equations
  • 9.1. Simultaneous Equations Bias
  • 9.2. Instrumental Variables and Two-Stage Least Squares
  • 9.3. Identification
  • 9.4. Full-Information Maximum Likelihood Estimation
  • 9.5. Estimation Based on the Reduced Form
  • 9.6. Overview of Simultaneous Equations Bias
  • Appendix 9.A. Proofs of Chapter 9 Proposition
  • Exercise
  • References
  • 10. Covariance-Stationary Vector Processes
  • 10.1. Introduction to Vector Autoregressions
  • 10.2. Autocovariances and Convergence Results for Vector Processes
  • 10.3. The Autocovariance-Generating Function for Vector Processes
  • 10.4. The Spectrum for Vector Processes
  • 10.5. The Sample Mean of a Vector Process
  • Appendix 10. A. Proofs of Chapter 10 Propositions
  • Exercises
  • References
  • 11. Vector Autoregressions
  • 11.1. Maximum Likelihood Estimation and Hypothesis Testing for an Unrestricted Vector Autoregression
  • 11.2. Bivariate Granger Causality Tests
  • 11.3. Maximum Likelihood Estimation of Restricted Vector Autoregressions
  • 11.4. The Impulse-Response Function
  • 11.5. Variance Decomposition
  • 11.6. Vector Autoregressions and Structural Econometric Models
  • 11.7. Standard Errors for Impulse-Response Functions
  • Appendix 11. A. Proofs of Chapter 11 Propositions
  • Appendix 11.B. Calculation of Analytic Derivatives
  • Exercises
  • References
  • 12. Bayesian Analysis
  • 12.1. Introduction to Bayesian Analysis
  • 12.2. Bayesian Analysis of Vector Autoregressions
  • 12.3. Numerical Bayesian Methods
  • Appendix 12. A. Proofs of Chapter 12 Propositions
  • Exercise
  • References
  • 13. The Kalman Filter
  • 13.1. The State-Space Representation of a Dynamic System
  • 13.2. Derivation of the Kalman Filter
  • 13.3. Forecasts Based on the State-Space Representation
  • 13.4. Maximum Likelihood Estimation of Parameters
  • 13.5. The Steady-State Kalman Filter
  • 13.6. Smoothing
  • 13.7. Statistical Inference with the Kalman Filter
  • 13.8. Time-Varying Parameters
  • Appendix 13. A. Proofs of Chapter 13 Propositions
  • Exercises
  • References
  • 14. Generalized Method of Moments
  • 14.1. Estimation by the Generalized Method of Moments
  • 14.2. Examples
  • 14.3. Extensions
  • 14.4. GMM and Maximum Likelihood Estimation
  • Appendix 14.A. Proofs of Chapter 14 Propositions
  • Exercise
  • References
  • 15. Models of Nonstationary Time Series
  • 15.1. Introduction
  • 15.2. Why Linear Time Trends and Unit Roots?
  • 15.3. Comparison of Trend-Stationary and Unit Root Processes
  • 15.4. The Meaning of Tests for Unit Roots
  • 15.5. Other Approaches to Trended Time Series
  • Appendix 15. A. Derivation of Selected Equations for Chapter 15
  • References
  • 16. Processes with Deterministic Time Trends
  • 16.1. Asymptotic Distribution of OLS Estimates of the Simple Time Trend Model
  • 16.2. Hypothesis Testing for the Simple Time Trend Model
  • 16.3. Asymptotic Inference for an Autoregressive Process Around a Deterministic Time Trend
  • Appendix 16. A. Derivation of Selected Equations for Chapter 16
  • Exercises
  • References
  • 17. Univariate Processes with Unit Roots
  • 17.1. Introduction
  • 17.2. Brownian Motion
  • 17.3. The Functional Central Limit Theorem
  • 17.4. Asymptotic Properties of a First-Order Autoregression when the True Coefficient Is Unity
  • 17.5. Asymptotic Results for Unit Root Processes with General Serial Correlation
  • 17.6. Phillips-Perron Tests for Unit Roots
  • 17.7. Asymptotic Properties of apth-Order Autoregression and the Augmented Dickey-Fuller Tests for U
  • 17.8. Other Approaches to Testing for Unit Roots
  • 17.9. Bayesian Analysis and Unit Roots
  • Appendix 17.A. Proofs of Chapter 17 Propositions
  • Exercises
  • References
  • 18. Unit Roots in Multivariate Time Series
  • 18.1. Asymptotic Results for Nonstationary Vector Processes
  • 18.2. Vector Autoregressions Containing Unit Roots
  • 18.3. Spurious Regressions
  • Appendix 18. A. Proofs of Chapter 18 Propositions
  • Exercises
  • References
  • 19. Cointegration
  • 19.1. Introduction
  • 19.2. Testing the Null Hypothesis of No Cointegration
  • 19.3. Testing Hypotheses About the Cointegrating Vector
  • Appendix 19. A. Proofs of Chapter 19 Propositions
  • Exercises
  • References
  • 20. Full-Information Maximum Likelihood Analysis of Cointegrated Systems
  • 20.1. Canonical Correlation
  • 20.2. Maximum Likelihood Estimation
  • 20.3. Hypothesis Testing
  • 20.4. Overview of Unit Roots—To Difference or Not to Difference?
  • Appendix 20. A. Proofs of Chapter 20 Propositions
  • Exercises
  • References
  • 21. Time Series Models of Heteroskedasticity
  • 21.1. Autoregressive Conditional Heteroskedasticity (ARCH)
  • 21.2. Extensions
  • Appendix 21. A. Derivation of Selected Equations for Chapter 21
  • References
  • 22. Modeling Time Series with Changes in Regime
  • 22.1. Introduction
  • 22.2. Markov Chains
  • 22.3. Statistical Analysis of i.i.d. Mixture Distributions
  • 22.4. Time Series Models of Changes in Regime
  • Appendix 22. A. Derivation of Selected Equations for Chapter 22
  • Exercise
  • References
  • A. Mathematical Review
  • A.I. Trigonometry
  • A.2. Complex Numbers
  • A.3. Calculus
  • A.4. Matrix Algebra
  • A.5. Probability and Statistics
  • References
  • B. Statistical Tables
  • C. Answers to Selected Exercises
  • D. Greek Letters and Mathematical Symbols Used in the Text
  • Author Index
  • Subject Index
Show More

Additional information

Veldu vöru

Rafbók til eignar

Reviews

There are no reviews yet.

Be the first to review “Time Series Analysis”

Netfang þitt verður ekki birt. Nauðsynlegir reitir eru merktir *

Aðrar vörur

1
    1
    Karfan þín
    A Beginner's Guide to Structural Equation Modeling
    A Beginner's Guide to Structural Equation Modeling
    Veldu vöru:

    Rafbók til eignar

    1 X 11.690 kr. = 11.690 kr.