Description
Efnisyfirlit
- PhET Simulations
- About the Authors
- Title Page
- Copyright Page
- Brief Contents
- Bringing the Best of Physics Education Research to a Trusted and Classic Text
- New and Enhanced Features
- Personalize Learning with Mastering Physics before, During, and after Class
- Real-World Applications
- To the Student
- Preface
- Acknowledgments
- Reviewers and Classroom Testers
- Contents
- 0. Mathematics Review
- 0.1. Exponents
- 0.2. Scientific Notation and Powers of 10
- 0.3. Algebra
- 0.4. Direct, Inverse, and Inverse-Square Relationships
- 0.5. Data-Driven Problems
- 0.6. Logarithmic and Exponential Functions
- 0.7. Areas and Volumes
- 0.8. Plane Geometry and Trigonometry
- 1. Models, Measurements, and Vectors
- 1.1. Introduction
- 1.2. Idealized Models
- 1.3. Standards and Units
- 1.4. Dimensional Consistency and Unit Conversions
- 1.5. Precision and Significant Figures
- 1.6. Estimates and Orders of Magnitude
- 1.7. Vectors and Vector Addition
- 1.8. Components of Vectors
- 2. Motion Along a Straight Line
- 2.1. Displacement and Average Velocity
- 2.2. Instantaneous Velocity
- 2.3. Average and Instantaneous Acceleration
- 2.4. Motion with Constant Acceleration
- 2.5. Proportional Reasoning
- 2.6. Freely Falling Objects
- 2.7. Relative Velocity Along a Straight Line
- 3. Motion in a Plane
- 3.1. Velocity in a Plane
- 3.2. Acceleration in a Plane
- 3.3. Projectile Motion
- 3.4. Uniform Circular Motion
- 3.5. Relative Velocity in a Plane
- 4. Newton’s Laws of Motion
- 4.1. Force
- 4.2. Newton’s First Law
- 4.3. Mass and Newton’s Second Law
- 4.4. Mass and Weight
- 4.5. Newton’s Third Law
- 4.6. Free-Body Diagrams
- 5. Applications of Newton’s Laws
- 5.1. Equilibrium of a Particle
- 5.2. Applications of Newton’s Second Law
- 5.3. Contact Forces and Friction
- 5.4. Elastic Forces
- 5.5. Forces in Nature
- 6. Circular Motion and Gravitation
- 6.1. Force in Circular Motion
- 6.2. Motion in a Vertical Circle
- 6.3. Newton’s Law of Gravitation
- 6.4. Weight
- 6.5. Satellite Motion
- 7. Work and Energy
- 7.1. An Overview of Energy
- 7.2. Work
- 7.3. Work and Kinetic Energy
- 7.4. Work Done by a Varying Force
- 7.5. Potential Energy
- 7.6. Conservation of Energy
- 7.7. Conservative and Nonconservative Forces
- 7.8. Power
- 8. Momentum
- 8.1. Momentum
- 8.2. Conservation of Momentum
- 8.3. Inelastic Collisions
- 8.4. Elastic Collisions
- 8.5. Impulse
- 8.6. Center of Mass
- 8.7. Motion of the Center of Mass
- 8.8. Rocket Propulsion
- 9. Rotational Motion
- 9.1. Angular Velocity and Angular Acceleration
- 9.2. Rotation with Constant Angular Acceleration
- 9.3. Relationship Between Linear and Angular Quantities
- 9.4. Kinetic Energy of Rotation and Moment of Inertia
- 9.5. Rotation About a Moving Axis
- 10. Dynamics of Rotational Motion
- 10.1. Torque
- 10.2. Torque and Angular Acceleration
- 10.3. Work and Power in Rotational Motion
- 10.4. Angular Momentum
- 10.5. Conservation of Angular Momentum
- 10.6. Equilibrium of a Rigid Body
- 10.7. Vector Nature of Angular Quantities
- 11. Elasticity and Periodic Motion
- 11.1. Stress, Strain, and Elastic Deformations
- 11.2. Periodic Motion
- 11.3. Energy in Simple Harmonic Motion
- 11.4. Equations of Simple Harmonic Motion
- 11.5. The Simple Pendulum
- 11.6. Damped and Forced Oscillations
- 12. Mechanical Waves and Sound
- 12.1. Mechanical Waves
- 12.2. Periodic Mechanical Waves
- 12.3. Wave Speeds
- 12.4. Mathematical Description of a Wave
- 12.5. Reflections and Superposition
- 12.6. Standing Waves and Normal Modes
- 12.7. Longitudinal Standing Waves
- 12.8. Interference
- 12.9. Sound and Hearing
- 12.10. Sound Intensity
- 12.11. Beats
- 12.12. The Doppler Effect
- 12.13. Applications of Acoustics
- 12.14. Musical Tones
- 13. Fluid Mechanics
- 13.1. Density
- 13.2. Pressure in a Fluid
- 13.3. Archimedes’s Principle: Buoyancy
- 13.4. Surface Tension and Capillarity
- 13.5. Fluid Flow
- 13.6. Bernoulli’s Equation
- 13.7. Applications of Bernoulli’s Equation
- 13.8. Real Fluids: Viscosity and Turbulence
- 14. Temperature and Heat
- 14.1. Temperature and Thermal Equilibrium
- 14.2. Temperature Scales
- 14.3. Thermal Expansion
- 14.4. Heat Energy
- 14.5. Phase Changes
- 14.6. Calorimetry
- 14.7. Heat Transfer
- 14.8. Solar Energy and Resource Conservation
- 15. Thermal Properties of Matter
- 15.1. The Mole and Avogadro’s Number
- 15.2. Equations of State
- 15.3. Kinetic Theory of an Ideal Gas
- 15.4. Heat Capacities
- 15.5. The First Law of Thermodynamics
- 15.6. Thermodynamic Processes
- 15.7. Properties of an Ideal Gas
- 16. The Second Law of Thermodynamics
- 16.1. Directions of Thermodynamic Processes
- 16.2. Heat Engines
- 16.3. Internal Combustion Engines
- 16.4. Refrigerators
- 16.5. The Second Law of Thermodynamics
- 16.6. The Carnot Engine: The Most Efficient Heat Engine
- 16.7. Entropy
- 16.8. The Kelvin Temperature Scale
- 16.9. Energy Resources: A Case Study in Thermodynamics
- 17. Electric Charge and Electric Field
- 17.1. Electric Charge
- 17.2. Conductors and Insulators
- 17.3. Conservation and Quantization of Charge
- 17.4. Coulomb’s Law
- 17.5. Electric Field and Electric Forces
- 17.6. Calculating Electric Fields
- 17.7. Electric Field Lines
- 17.8. Gauss’s Law and Field Calculations
- 17.9. Charges on Conductors
- 18. Electric Potential and Capacitance
- 18.1. Electric Potential Energy
- 18.2. Potential
- 18.3. Equipotential Surfaces
- 18.4. Capacitors
- 18.5. Capacitors in Series and in Parallel
- 18.6. Electric-Field Energy
- 18.7. Dielectrics
- 19. Current, Resistance, and Direct-Current Circuits
- 19.1. Current
- 19.2. Resistance and Ohm’s Law
- 19.3. Electromotive Force and Circuits
- 19.4. Energy and Power in Electric Circuits
- 19.5. Resistors in Series and in Parallel
- 19.6. Kirchhoff’s Rules
- 19.7. Electrical Measuring Instruments
- 19.8. Resistance–Capacitance Circuits
- 19.9. Physiological Effects of Currents
- 19.10. Power Distribution Systems
- 20. Magnetic Field and Magnetic Forces
- 20.1. Magnetism
- 20.2. Magnetic Field and Magnetic Force
- 20.3. Motion of Charged Particles in a Magnetic Field
- 20.4. Mass Spectrometers
- 20.5. Magnetic Force on a Current-Carrying Conductor
- 20.6. Force and Torque on a Current Loop
- 20.7. Magnetic Field of a Long, Straight Conductor
- 20.8. Force Between Parallel Conductors
- 20.9. Current Loops and Solenoids
- 20.10. Magnetic-Field Calculations
- 20.11. Magnetic Materials
- 21. Electromagnetic Induction
- 21.1. Induction Experiments
- 21.2. Magnetic Flux
- 21.3. Faraday’s Law
- 21.4. Lenz’s Law
- 21.5. Motional Electromotive Force
- 21.6. Eddy Currents
- 21.7. Mutual Inductance
- 21.8. Self-Inductance
- 21.9. Transformers
- 21.10. Magnetic-Field Energy
- 21.11. The R–L Circuit
- 21.12. The L–C Circuit
- 22. Alternating Current
- 22.1. Phasors and Alternating Currents
- 22.2. Resistance and Reactance
- 22.3. The Series R–L–C Circuit
- 22.4. Power in Alternating-Current Circuits
- 22.5. Series Resonance
- 23. Electromagnetic Waves
- 23.1. Introduction to Electromagnetic Waves
- 23.2. Speed of an Electromagnetic Wave
- 23.3. The Electromagnetic Spectrum
- 23.4. Sinusoidal Waves
- 23.5. Energy in Electromagnetic Waves
- 23.6. Nature of Light
- 23.7. Reflection and Refraction
- 23.8. Total Internal Reflection
- 23.9. Dispersion
- 23.10. Polarization
- 23.11. Huygens’s Principle
- 24. Geometric Optics
- 24.1. Reflection at a Plane Surface
- 24.2. Reflection at a Spherical Surface
- 24.3. Graphical Methods for Mirrors
- 24.4. Refraction at a Spherical Surface
- 24.5. Thin Lenses
- 24.6. Graphical Methods for Lenses
- 25. Optical Instruments
- 25.1. The Camera
- 25.2. The Eye
- 25.3. The Magnifier
- 25.4. The Microscope
- 25.5. Telescopes
- 26. Interference and Diffraction
- 26.1. Interference and Coherent Sources
- 26.2. Two-Source Interference of Light
- 26.3. Interference in Thin Films
- 26.4. Diffraction
- 26.5. Diffraction from a Single Slit
- 26.6. Multiple Slits and Diffraction Gratings
- 26.7. X-Ray Diffraction
- 26.8. Circular Apertures and Resolving Power
- 26.9. Holography
- 27. Relativity
- 27.1. Invariance of Physical Laws
- 27.2. Relative Nature of Simultaneity
- 27.3. Relativity of Time
- 27.4. Relativity of Length
- 27.5. The Lorentz Transformation
- 27.6. Relativistic Momentum
- 27.7. Relativistic Work and Energy
- 27.8. Relativity and Newtonian Mechanics
- 28. Photons, Electrons, and Atoms
- 28.1. The Photoelectric Effect
- 28.2. Line Spectra and Energy Levels
- 28.3. The Nuclear Atom and the Bohr Model
- 28.4. The Laser
- 28.5. X-Ray Production and Scattering
- 28.6. The Wave Nature of Particles
- 28.7. Wave–Particle Duality
- 28.8. The Electron Microscope
- 29. Atoms, Molecules, and Solids
- 29.1. Electrons in Atoms
- 29.2. Atomic Structure
- 29.3. Diatomic Molecules
- 29.4. Structure and Properties of Solids
- 29.5. Energy Bands
- 29.6. Semiconductors
- 29.7. Semiconductor Devices
- 29.8. Superconductivity
- 30. Nuclear and High-Energy Physics
- 30.1. Properties of Nuclei
- 30.2. Nuclear Stability
- 30.3. Radioactivity
- 30.4. Radiation and the Life Sciences
- 30.5. Nuclear Reactions
- 30.6. Nuclear Fission
- 30.7. Nuclear Fusion
- 30.8. Fundamental Particles
- 30.9. High-Energy Physics
- 30.10. Cosmology
- Appendix A: The International System of Units
- Appendix B: The Greek Alphabet
- Appendix C: Periodic Table of the Elements
- Appendix D: Unit Conversion Factors
- Appendix E: Numerical Constants
- Answers to Selected Odd-Numbered Problems
- Credits
- Index
- Unit Conversion Factors
- Numerical Constants
- Back Cover
Reviews
There are no reviews yet.