Python for Scientists

Höfundur John M. Stewart

Útgefandi Cambridge University Press

Snið Page Fidelity

Print ISBN 9781107061392

Útgáfa 1

Útgáfuár

4.690 kr.

Description

Efnisyfirlit

  • Half title
  • Title
  • Copyright
  • Contents
  • Preface
  • 1 Introduction
  • 1.1 Scientific software
  • 1.2 The plan of this book
  • 1.3 Can Python compete with compiled languages?
  • 1.4 Limitations of this book
  • 1.5 Installing Python and add-ons
  • 2 Getting started with IPython
  • 2.1 Generalities
  • 2.2 Tab completion
  • 2.3 Introspection
  • 2.4 History
  • 2.5 Magic commands
  • 2.6 The magic %run command
  • 3 A short Python tutorial
  • 3.1 Typing Python
  • 3.2 Objects and identifiers
  • 3.3 Numbers
  • 3.3.1 Integers
  • 3.3.2 Real numbers
  • 3.3.3 Boolean numbers
  • 3.3.4 Complex numbers
  • 3.4 Namespaces and modules
  • 3.5 Container objects
  • 3.5.1 Lists
  • 3.5.2 List indexing
  • 3.5.3 List slicing
  • 3.5.4 List mutability
  • 3.5.5 Tuples
  • 3.5.6 Strings
  • 3.5.7 Dictionaries
  • 3.6 Python if statements
  • 3.7 Loop constructs
  • 3.7.1 The Python for loop
  • 3.7.2 The Python continue statement
  • 3.7.3 The Python break statement
  • 3.7.4 List comprehensions
  • 3.7.5 Python while loops
  • 3.8 Functions
  • 3.8.1 Syntax and scope
  • 3.8.2 Positional arguments
  • 3.8.3 Keyword arguments
  • 3.8.4 Variable number of positional arguments
  • 3.8.5 Variable number of keyword arguments
  • 3.8.6 The Python print function
  • 3.8.7 Anonymous functions
  • 3.9 Introduction to Python classes
  • 3.10 The structure of Python
  • 3.11 Prime numbers: a worked example
  • 4 Numpy
  • 4.1 One-dimensional arrays
  • 4.1.1 Ab initio constructors
  • 4.1.2 Look alike constructors
  • 4.1.3 Arithmetical operations on vectors
  • 4.1.4 Ufuncs
  • 4.1.5 Logical operations on vectors
  • 4.2 Two-dimensional arrays
  • 4.2.1 Broadcasting
  • 4.2.2 Ab initio constructors
  • 4.2.3 Look alike constructors
  • 4.2.4 Operations on arrays and ufuncs
  • 4.3 Higher-dimensional arrays
  • 4.4 Domestic input and output
  • 4.4.1 Discursive output and input
  • 4.4.2 Numpy text output and input
  • 4.4.3 Numpy binary output and input
  • 4.5 Foreign input and output
  • 4.5.1 Small amounts of data
  • 4.5.2 Large amounts of data
  • 4.6 Miscellaneous ufuncs
  • 4.6.1 Maxima and minima
  • 4.6.2 Sums and products
  • 4.6.3 Simple statistics
  • 4.7 Polynomials
  • 4.7.1 Converting data to coefficients
  • 4.7.2 Converting coefficients to data
  • 4.7.3 Manipulating polynomials in coefficient form
  • 4.8 Linear algebra
  • 4.8.1 Basic operations on matrices
  • 4.8.2 More specialized operations on matrices
  • 4.8.3 Solving linear systems of equations
  • 4.9 More numpy and beyond
  • 4.9.1 Scipy
  • 4.9.2 Scikits
  • 5 Two-dimensional graphics
  • 5.1 Introduction
  • 5.2 Getting started: simple figures
  • 5.2.1 Front-ends
  • 5.2.2 Back-ends
  • 5.2.3 A simple figure
  • 5.2.4 Interactive controls
  • 5.3 Cartesian plots
  • 5.3.1 The matplotlib plot function
  • 5.3.2 Curve styles
  • 5.3.3 Marker styles
  • 5.3.4 Axes, grid, labels and title
  • 5.3.5 A not-so-simple example: partial sums of Fourier series
  • 5.4 Polar plots
  • 5.5 Error bars
  • 5.6 Text and annotations
  • 5.7 Displaying mathematical formulae
  • 5.7.1 Non-LATEX users
  • 5.7.2 LATEX users
  • 5.7.3 Alternatives for LATEX users
  • 5.8 Contour plots
  • 5.9 Compound figures
  • 5.9.1 Multiple figures
  • 5.9.2 Multiple plots
  • 5.10 Animations
  • 5.10.1 In situ animations
  • 5.10.2 Movies
  • 5.11 Mandelbrot sets: a worked example
  • 6 Three-dimensional graphics
  • 6.1 Introduction
  • 6.1.1 Three-dimensional data sets
  • 6.1.2 The reduction to two dimensions
  • 6.2 Visualization software
  • 6.3 A three-dimensional curve
  • 6.3.1 Visualizing the curve with mplot3d
  • 6.3.2 Visualizing the curve with mlab
  • 6.4 A simple surface
  • 6.4.1 Visualizing the simple surface with mplot3d
  • 6.4.2 Visualizing the simple surface with mlab
  • 6.5 A parametrically defined surface
  • 6.5.1 Visualizing Enneper?s surface using mplot3d
  • 6.5.2 Visualizing Enneper?s surface using mlab
  • 6.6 Three-dimensional visualization of a Julia set
  • 7 Ordinary differential equations
  • 7.1 Initial value problems
  • 7.2 Basic concepts
  • 7.3 The odeint function
  • 7.3.1 Theoretical background
  • 7.3.2 Practical usage
  • 7.4 Two-point boundary value problems
  • 7.4.1 Introduction
  • 7.4.2 Formulation of the boundary value problem
  • 7.4.3 A simple example
  • 7.4.4 A linear eigenvalue problem
  • 7.4.5 A non-linear boundary value problem
  • 7.5 Delay differential equations
  • 7.5.1 A model equation
  • 7.5.2 More general equations and their numerical solution
  • 7.5.3 The logistic equation
  • 7.5.4 The Mackey-Glass equation
  • 7.6 Stochastic differential equations
  • 7.6.1 The Wiener process
  • 7.6.2 The It? calculus
  • 7.6.3 It? and Stratanovich stochastic integrals
  • 7.6.4 Numerical solution of stochastic differential equations
  • 8 Partial differential equations: a pseudospectral approach
  • 8.1 Initial-boundary value problems
  • 8.2 Method of lines
  • 8.3 Spatial derivatives via finite differencing
  • 8.4 Spatial derivatives by spectral techniques for periodic problems
  • 8.5 The IVP for spatially periodic problems
  • 8.6 Spectral techniques for non-periodic problems
  • 8.7 An introduction to f2py
  • 8.7.1 Simple examples with scalar arguments
  • 8.7.2 Vector arguments
  • 8.7.3 A simple example with multi-dimensional arguments
  • 8.7.4 Undiscussed features of f2py
  • 8.8 A real-life f2py example
  • 8.9 Worked example: Burgers? equation
  • 8.9.1 Boundary conditions: the traditional approach
  • 8.9.2 Boundary conditions: the penalty approach
  • 9 Case study: multigrid
  • 9.1 The one-dimensional case
  • 9.1.1 Linear elliptic equations
  • 9.1.2 Smooth and rough modes
  • 9.2 The tools of multigrid
  • 9.2.1 Relaxation methods
  • 9.2.2 Residual and error
  • 9.2.3 Prolongation and restriction
  • 9.3 Multigrid schemes
  • 9.3.1 The two-grid algorithm
  • 9.3.2 The V-cycle scheme
  • 9.3.3 The full multigrid scheme (FMG)
  • 9.4 A simple Python multigrid implementation
  • 9.4.1 Utility functions
  • 9.4.2 Smoothing functions
  • 9.4.3 Multigrid functions
  • Appendix A Installing a Python environment
  • A.1 Installing Python packages
  • A.2 Communicating with Python
  • A.2.1 Editors for programming
  • A.2.2 The IPython-editor interaction
  • A.2.3 The two windows approach
  • A.2.4 Calling the editor from within IPython
  • A.2.5 Calling IPython from within the editor
  • A.2.6 The IPython pager
  • A.3 The Python Package Index
  • Appendix B Fortran77 subroutines for pseudospectral methods
  • References
  • Index
Show More

Additional information

Veldu vöru

Rafbók til eignar, Leiga á rafbók í 180 daga

Reviews

There are no reviews yet.

Be the first to review “Python for Scientists”

Netfang þitt verður ekki birt. Nauðsynlegir reitir eru merktir *

Aðrar vörur

1
    1
    Karfan þín
    Food in World History
    Food in World History
    Veldu vöru:

    Rafbók til eignar

    1 X 6.190 kr. = 6.190 kr.