High Energy Astrophysics

Höfundur Malcolm S. Longair

Útgefandi Cambridge University Press

Snið Page Fidelity

Print ISBN 9780521756181

Útgáfa 3

Útgáfuár

10.990 kr.

Description

Efnisyfirlit

  • Half-title
  • Title page
  • Copyright information
  • Dedication
  • Contents
  • Preface
  • Acknowledgements
  • Part I Astronomical background
  • 1 High energy astrophysics – an introduction
  • 1.1 High energy astrophysics and modern physics and astronomy
  • 1.2 The sky in different astronomical wavebands
  • 1.3 Optical waveband
  • 1.4 Infrared waveband
  • 1.5 Millimetre and submillimetre waveband
  • 1.6 Radio waveband
  • 1.7 Ultraviolet waveband
  • 1.8 X-ray waveband
  • 1.9 γ-ray waveband
  • 1.10 Cosmic ray astrophysics
  • 1.11 Other non-electromagnetic astronomies
  • 1.12 Concluding remarks
  • 2 The stars and stellar evolution
  • 2.1 Introduction
  • 2.2 Basic observations
  • 2.3 Stellar structure
  • 2.4 The equations of energy generation and energy transport
  • 2.5 The equations of stellar structure
  • 2.6 The Sun as a star
  • 2.7 Evolution of high and low mass stars
  • 2.8 Stellar evolution on the colour–magnitude diagram
  • 2.9 Mass loss
  • 2.10 Conclusion
  • 3 The galaxies
  • 3.1 Introduction
  • 3.2 The Hubble sequence
  • 3.3 The red and blue sequences
  • 3.4 Further correlations among the properties of galaxies
  • 3.5 The masses of galaxies
  • 3.6 The luminosity function of galaxies
  • 4 Clusters of galaxies
  • 4.1 The morphologies of rich clusters of galaxies
  • 4.2 Clusters of galaxies and isothermal gas spheres
  • 4.3 The Coma Cluster of galaxies
  • 4.4 Mass distribution of hot gas and dark matter in clusters
  • 4.5 Cooling flows in clusters of galaxies
  • 4.6 The Sunyaev–Zeldovich effect in hot intracluster gas
  • 4.7 Gravitational lensing by galaxies and clusters of galaxies
  • 4.8 Dark matter in galaxies and clusters of galaxies
  • Part II Physical processes
  • 5 Ionisation losses
  • 5.1 Introduction
  • 5.2 Ionisation losses – non-relativistic treatment
  • 5.3 The relativistic case
  • 5.4 Practical forms of the ionisation loss formulae
  • 5.5 Ionisation losses of electrons
  • 5.6 Nuclear emulsions, plastics and meteorites
  • 5.7 Dynamical friction
  • 6 Radiation of accelerated charged particles and bremsstrahlung of electrons
  • 6.1 Introduction
  • 6.2 The radiation of accelerated charged particles
  • 6.3 Bremsstrahlung
  • 6.4 Non-relativistic bremsstrahlung energy loss rate
  • 6.5 Thermal bremsstrahlung
  • 6.6 Relativistic bremsstrahlung
  • 7 The dynamics of charged particles in magnetic fields
  • 7.1 A uniform static magnetic field
  • 7.2 A time-varying magnetic field
  • 7.3 The scattering of charged particles by irregularities in the magnetic field
  • 7.4 The scattering of high energy particles by Alfv[acute(e)]n and hydromagnetic waves
  • 7.5 The diffusion-loss equation for high energy particles
  • 8 Synchrotron radiation
  • 8.1 The total energy loss rate
  • 8.2 Non-relativistic gyroradiation and cyclotron radiation
  • 8.3 The spectrum of synchrotron radiation – physical arguments
  • 8.4 The spectrum of synchrotron radiation – a fuller version
  • 8.5 The synchrotron radiation of a power-law distribution of electron energies
  • 8.6 The polarisation of synchrotron radiation
  • 8.7 Synchrotron self-absorption
  • 8.8 Useful numerical results
  • 8.9 The radio emission of the Galaxy
  • 9 Interactions of high energy photons
  • 9.1 Photoelectric absorption
  • 9.2 Thomson and Compton scattering
  • 9.3 Inverse Compton scattering
  • 9.4 Comptonisation
  • 9.5 The Sunyaev–Zeldovich effect
  • 9.6 Synchrotron–self-Compton radiation
  • 9.7 Cherenkov radiation
  • 9.8 Electron–positron pair production
  • 9.9 Electron–photon cascades, electromagnetic showers and the detection of ultra-high energy γ-ra
  • 9.10 Electron–positron annihilation and positron production mechanisms
  • 10 Nuclear interactions
  • 10.1 Nuclear interactions and high energy astrophysics
  • 10.2 Spallation cross-sections
  • 10.3 Nuclear emission lines
  • 10.4 Cosmic rays in the atmosphere
  • 11 Aspects of plasma physics and magnetohydrodynamics
  • 11.1 Elementary concepts in plasma physics
  • 11.2 Magnetic flux freezing
  • 11.3 Shock waves
  • 11.4 The Earth’s magnetosphere
  • 11.5 Magnetic buoyancy
  • 11.6 Reconnection of magnetic lines of force
  • Part III High energy astrophysics in our Galaxy
  • 12 Interstellar gas and magnetic fields
  • 12.1 The interstellar medium in the life cycle of stars
  • 12.2 Diagnostic tools – neutral interstellar gas
  • 12.3 Ionised interstellar gas
  • 12.4 Interstellar dust
  • 12.5 An overall picture of the interstellar gas
  • 12.6 Star formation
  • 12.7 The Galactic magnetic field
  • 13 Dead stars
  • 13.1 Supernovae
  • 13.2 White dwarfs, neutron stars and the Chandrasekhar limit
  • 13.3 White dwarfs
  • 13.4 Neutron stars
  • 13.5 The discovery of neutron stars
  • 13.6 The Galactic population of neutron stars
  • 13.7 Thermal emission of neutron stars
  • 13.8 Pulsar glitches
  • 13.9 The pulsar magnetosphere
  • 13.10 The radio and high energy emission of pulsars
  • 13.11 Black holes
  • 14 Accretion power in astrophysics
  • 14.1 Introduction
  • 14.2 Accretion – general considerations
  • 14.3 Thin accretion discs
  • 14.4 Thick discs and advective flows
  • 14.5 Accretion in binary systems
  • 14.6 Accreting binary systems
  • 14.7 Black holes in X-ray binaries
  • 14.8 Final thoughts
  • 15 Cosmic rays
  • 15.1 The energy spectra of cosmic ray protons and nuclei
  • 15.2 The abundances of the elements in the cosmic rays
  • 15.3 The isotropy and energy density of cosmic rays
  • 15.4 Gamma ray observations of the Galaxy
  • 15.5 The origin of the light elements in the cosmic rays
  • 15.6 The confinement time of cosmic rays in the Galaxy and cosmic ray clocks
  • 15.7 The confinement volume for cosmic rays
  • 15.8 The Galactic halo
  • 15.9 The highest energy cosmic rays and extensive air-showers
  • 15.10 Observations of the highest energy cosmic rays
  • 15.11 The isotropy of ultra-high energy cosmic rays
  • 15.12 The Greisen–Kuzmin–Zatsepin (GKZ) cut-off
  • 16 The origin of cosmic rays in our Galaxy
  • 16.1 Introduction
  • 16.2 Energy loss processes for high energy electrons
  • 16.3 Diffusion-loss equation for high energy electrons
  • 16.4 Supernova remnants as sources of high energy particles
  • 16.5 The minimum energy requirements for synchrotron radiation
  • 16.6 Supernova remnants as sources of high energy electrons
  • 16.7 The evolution of supernova remnants
  • 16.8 The adiabatic loss problem and the acceleration of high energy particles
  • 17 The acceleration of high energy particles
  • 17.1 General principles of acceleration
  • 17.2 The acceleration of particles in solar flares
  • 17.3 Fermi acceleration – original version
  • 17.4 Diffusive shock acceleration in strong shock waves
  • 17.5 Beyond the standard model
  • 17.6 The highest energy cosmic rays
  • Part IV Extragalactic high energy astrophysics
  • 18 Active galaxies
  • 18.1 Introduction
  • 18.2 Radio galaxies and high energy astrophysics
  • 18.3 The quasars
  • 18.4 Seyfert galaxies
  • 18.5 Blazars, superluminal sources and γ-ray sources
  • 18.6 Low Ionisation Nuclear Emission Regions – LINERs
  • 18.7 Ultra-Luminous InfraRed Galaxies – ULIRGs
  • 18.8 X-ray surveys of active galaxies
  • 18.9 Unification schemes for active galaxies
  • 19 Black holes in the nuclei of galaxies
  • 19.1 The properties of black holes
  • 19.2 Elementary considerations
  • 19.3 Dynamical evidence for supermassive black holes in galactic nuclei
  • 19.4 The Soltan argument
  • 19.5 Black holes and spheroid masses
  • 19.6 X-ray observations of fluorescence lines in active galactic nuclei
  • 19.7 The growth of black holes in the nuclei of galaxies
  • 20 The vicinity of the black hole
  • 20.1 The prime ingredients of active galactic nuclei
  • 20.2 The continuum spectrum
  • 20.3 The emission line regions – the overall picture
  • 20.4 The narrow-line regions – the example of Cygnus A
  • 20.5 The broad-line regions and reverberation mapping
  • 20.6 The alignment effect and shock excitation of emission line regions
  • 20.7 Accretion discs about supermassive black holes
  • 21 Extragalactic radio sources
  • 21.1 Extended radio sources – Fanaroff–Riley types
  • 21.2 The astrophysics of FR2 radio sources
  • 21.3 The FR1 radio sources
  • 21.4 The microquasars
  • 21.5 Jet physics
  • 22 Compact extragalactic sources and superluminal motions
  • 22.1 Compact radio sources
  • 22.2 Superluminal motions
  • 22.3 Relativistic beaming
  • 22.4 The superluminal source population
  • 22.5 Synchro-Compton radiation and the inverse Compton catastrophe
  • 22.6 γ-ray sources in active galactic nuclei
  • 22.7 γ-ray bursts
  • 23 Cosmological aspects of high energy astrophysics
  • 23.1 The cosmic evolution of galaxies and active galaxies
  • 23.2 The essential theoretical tools
  • 23.3 The evolution of non-thermal sources with cosmic epoch
  • 23.4 The evolution of thermal sources with cosmic epoch
  • 23.5 Midand far-infrared number counts
  • 23.6 Submillimetre number counts
  • 23.7 The global star-formation rate
  • 23.8 The old red galaxies
  • 23.9 Putting it all together
  • Appendix Astronomical conventions and nomenclature
  • A.1 Galactic coordinates and projections of the celestial sphere onto a plane
  • A.2 Distances in astronomy
  • A.3 Masses in astronomy
  • A.4 Flux densities, luminosities, magnitudes and colours
  • A.5 Diffraction-limited telescopes
  • A.6 Interferometry and synthesis imaging
  • A.7 The sensitivities of astronomical detectors
  • A.8 Units and relativistic notation
  • Bibliography
  • Name index
  • Object index
  • Index
Show More

Additional information

Veldu vöru

Rafbók til eignar, Leiga á rafbók í 180 daga

Reviews

There are no reviews yet.

Be the first to review “High Energy Astrophysics”

Netfang þitt verður ekki birt. Nauðsynlegir reitir eru merktir *

Aðrar vörur

0
    0
    Karfan þín
    Karfan þín er tómAftur í búð