Discovering Statistics Using R

Höfundur Andy Field; Jeremy Miles; Zoë Field

Útgefandi SAGE Publications, Ltd. (UK)

Snið ePub

Print ISBN 9781446200469

Útgáfa 1

Útgáfuár 2012

9.090 kr.

Description

Efnisyfirlit

  • Cover Page
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • How to use this book
  • Acknowledgements
  • Dedication
  • Symbols used in this book
  • Some maths revision
  • 1 Why is my evil lecturer forcing me to learn statistics?
  • 1.1. What will this chapter tell me?
  • 1.2. What the hell am I doing here? I don’t belong here
  • 1.3. Initial observation: finding something that needs explaining
  • 1.4. Generating theories and testing them
  • 1.5. Data collection 1: what to measure
  • 1.5.1. Variables
  • 1.5.2. Measurement error
  • 1.5.3. Validity and reliability
  • 1.6. Data collection 2: how to measure
  • 1.6.1. Correlational research methods
  • 1.6.2. Experimental research methods
  • 1.6.3. Randomization
  • 1.7. Analysing data
  • 1.7.1. Frequency distributions
  • 1.7.2. The centre of a distribution
  • 1.7.3. The dispersion in a distribution
  • 1.7.4. Using a frequency distribution to go beyond the data
  • 1.7.5. Fitting statistical models to the data
  • What have I discovered about statistics?
  • Key terms that I’ve discovered
  • Smart Alex’s tasks
  • Further reading
  • Interesting real research
  • 2 Everything you ever wanted to know about statistics(well, sort of) (well, sort of)
  • 2.1. What will this chapter tell me?
  • 2.2. Building statistical models
  • 2.3. Populations and samples
  • 2.4. Simple statistical models
  • 2.4.1. The mean: a very simple statistical model
  • 2.4.2. Assessing the fit of the mean: sums of squares, variance and standard deviations
  • 2.4.3. Expressing the mean as a model
  • 2.5. Going beyond the data
  • 2.5.1. The standard error
  • 2.5.2. Confidence intervals
  • 2.6. Using statistical models to test research questions
  • 2.6.1. Test statistics
  • 2.6.2. One- and two-tailed tests
  • 2.6.3. Type I and Type II errors
  • 2.6.4. Effect sizes
  • 2.6.5. Statistical power
  • What have I discovered about statistics?
  • Key terms that I’ve discovered
  • Smart Alex’s tasks
  • Further reading
  • Interesting real research
  • 3 The R environment
  • 3.1. What will this chapter tell me?
  • 3.2. Before you start
  • 3.2.1. The R-chitecture
  • 3.2.2. Pros and cons of R
  • 3.2.3. Downloading and installing R
  • 3.2.4. Versions of R
  • 3.3. Getting started
  • 3.3.1. The main windows in R
  • 3.3.2. Menus in R
  • 3.4. Using R
  • 3.4.1. Commands, objects and functions
  • 3.4.2. Using scripts
  • 3.4.3. The R workspace
  • 3.4.4. Setting a working directory
  • 3.4.5. Installing packages
  • 3.4.6. Getting help
  • 3.5. Getting data into R
  • 3.5.1. Creating variables
  • 3.5.2. Creating dataframes
  • 3.5.3. Calculating new variables from exisiting ones
  • 3.5.4. Organizing your data
  • 3.5.5. Missing values
  • 3.6. Entering data with R Commander
  • 3.6.1. Creating variables and entering data with R Commander
  • 3.6.2. Creating coding variables with R Commander
  • 3.7. Using other software to enter and edit data
  • 3.7.1. Importing data
  • 3.7.2. Importing SPSS data files directly
  • 3.7.3. Importing data with R Commander
  • 3.7.4. Things that can go wrong
  • 3.8. Saving data
  • 3.9. Manipulating data
  • 3.9.1. Selecting parts of a dataframe
  • 3.9.2. Selecting data with the subset() function
  • 3.9.3. Dataframes and matrices
  • 3.9.4. Reshaping data
  • What have I discovered about statistics?
  • R packages used in this chapter
  • R functions used in this chapter
  • Key terms that I’ve discovered
  • Smart Alex’s tasks
  • Further reading
  • 4 Exploring data with graphs
  • 4.1. What will this chapter tell me?
  • 4.2. The art of presenting data
  • 4.2.1. Why do we need graphs
  • 4.2.2. What makes a good graph?
  • 4.2.3. Lies, damned lies, and … erm … graphs
  • 4.3. Packages used in this chapter
  • 4.4. Introducing ggplot2
  • 4.4.1. The anatomy of a plot
  • 4.3.2. Geometric objects (geoms)
  • 4.4.3. Aesthetics
  • 4.4.4. The anatomy of the ggplot() function
  • 4.4.5. Stats and geoms
  • 4.4.6. Avoiding overplotting
  • 4.4.7. Saving graphs
  • 4.4.8. Putting it all together: a quick tutorial
  • 4.5. Graphing relationships: the scatterplot
  • 4.5.1. Simple scatterplot
  • 4.5.2. Adding a funky line
  • 4.5.3. Grouped scatterplot
  • 4.6. Histograms: a good way to spot obvious problems
  • 4.7. Boxplots (box–whisker diagrams)
  • 4.8. Density plots
  • 4.9. Graphing means
  • 4.9.1. Bar charts and error bars
  • 4.9.2. Line graphs
  • 4.10. Themes and options
  • What have I discovered about statistics?
  • R packages used in this chapter
  • R functions used in this chapter
  • Key terms that I’ve discovered
  • Smart Alex’s tasks
  • Further reading
  • Interesting real research
  • 5 Exploring assumptions
  • 5.1. What will this chapter tell me?
  • 5.2. What are assumptions?
  • 5.3. Assumptions of parametric data
  • 5.4. Packages used in this chapter
  • 5.5. The assumption of normality
  • 5.5.1. Oh no, it’s that pesky frequency distribution again: checking normality visually
  • 5.5.2. Quantifying normality with numbers
  • 5.5.3. Exploring groups of data
  • 5.6. Testing whether a distribution is normal
  • 5.6.1. Doing the Shapiro–Wilk test in R
  • 5.6.2. Reporting the Shapiro–Wilk test
  • 5.7. Testing for homogeneity of variance
  • 5.7.1. Levene’s test
  • 5.7.2. Reporting Levene’s test
  • 5.7.3. Hartley’s Fmax: the variance ratio
  • 5.8. Correcting problems in the data
  • 5.8.1. Dealing with outliers
  • 5.8.2. Dealing with non-normality and unequal variances
  • 5.8.3. Transforming the data using R
  • 5.8.4. When it all goes horribly wrong
  • What have I discovered about statistics?
  • R packages used in this chapter
  • R functions used in this chapter
  • Key terms that I’ve discovered
  • Smart Alex’s tasks
  • Further reading
  • 6 Correlation
  • 6.1. What will this chapter tell me?
  • 6.2. Looking at relationships
  • 6.3. How do we measure relationships?
  • 6.3.1. A detour into the murky world of covariance
  • 6.3.2. Standardization and the correlation coefficient
  • 6.3.3. The significance of the correlation coefficient
  • 6.3.4. Confidence intervals for r
  • 6.3.5. A word of warning about interpretation: causality
  • 6.4. Data entry for correlation analysis
  • 6.5. Bivariate correlation
  • 6.5.1. Packages for correlation analysis in R
  • 6.5.2. General procedure for correlations using R Commander
  • 6.5.3. General procedure for correlations using R
  • 6.5.4. Pearson’s correlation coefficient
  • 6.5.5. Spearman’s correlation coefficient
  • 6.5.6. Kendall’s tau (non-parametric)
  • 6.5.7. Bootstrapping correlations
  • 6.5.8. Biserial and point-biserial correlations
  • 6.6. Partial correlation
  • 6.6.1. The theory behind part and partial correlation
  • 6.6.2. Partial correlation using R
  • 6.6.3 Semi-partial (or part) correlations
  • 6.7. Comparing correlations
  • 6.7.1. Comparing independent rs
  • 6.7.2. Comparing dependent rs
  • 6.8. Calculating the effect size
  • 6.9. How to report correlation coefficents
  • What have I discovered about statistics?
  • R packages used in this chapter
  • R functions used in this chapter
  • Key terms that I’ve discovered
  • Smart Alex’s tasks
  • Further reading
  • Interesting real research
  • 7 Regression
  • 7.1. What will this chapter tell me?
  • 7.2. An introduction to regression
  • 7.2.1. Some important information about straight lines
  • 7.2.2. The method of least squares
  • 7.2.3. Assessing the goodness of fit: sums of squares, R and R2
  • 7.2.4. Assessing individual predictors
  • 7.3. Packages used in this chapter
  • 7.4. General procedure for regression in R
  • 7.4.1. Doing simple regression using R Commander
  • 7.4.2. Regression in R
  • 7.5. Interpreting a simple regression
  • 7.5.1. Overall fit of the object model
  • 7.5.2. Model parameters
  • 7.5.3. Using the model
  • 7.6. Multiple regression: the basics
  • 7.6.1. An example of a multiple regression model
  • 7.6.2. Sums of squares, R and R2
  • 7.6.3. Parsimony-adjusted measures of fit
  • 7.6.4. Methods of regression
  • 7.7. How accurate is my regression model?
  • 7.7.1. Assessing the regression model I: diagnostics
  • 7.7.2. Assessing the regression model II: generalization
  • 7.8. How to do multiple regression using R Commander and R
  • 7.8.1. Some things to think about before the analysis
  • 7.8.2. Multiple regression: running the basic model
  • 7.8.3. Interpreting the basic multiple regression
  • 7.8.4. Comparing models
  • 7.9. Testing the accuracy of your regression model
  • 7.9.1. Diagnostic tests using R Commander
  • 7.9.2. Outliers and influential cases
  • 7.9.3. Assessing the assumption of independence
  • 7.9.4. Assessing the assumption of no multicollinearity
  • 7.9.5. Checking assumptions about the residuals
  • 7.9.6. What if I violate an assumption?
  • 7.10. Robust regression: bootstrapping
  • 7.11. How to report multiple regression
  • 7.12. Categorical predictors and multiple regression
  • 7.12.1. Dummy coding
  • 7.12.2. Regression with dummy variables
  • What have I discovered about statistics?
  • R packages used in this chapter
  • R functions used in this chapter
  • Key terms that I’ve discovered
  • Smart Alex’s tasks
  • Further reading
  • Interesting real research
  • 8 Logistic regression
  • 8.1. What will this chapter tell me?
  • 8.2. Background to logistic regression
  • 8.3. What are the principles behind logistic regression?
  • 8.3.1. Assessing the model: the log-likelihood statistic
  • 8.3.2. Assessing the model: the deviance statistic
  • 8.3.3. Assessing the model: R and R2
  • 8.3.4. Assessing the model: information criteria
  • 8.3.5. Assessing the contribution of predictors: the z-statistic
  • 8.3.6. The odds ratio
  • 8.3.7. Methods of logistic regression
  • 8.4. Assumptions and things that can go wrong
  • 8.4.1. Assumptions
  • 8.4.2. Incomplete information from the predictors
  • 8.4.3. Complete separation
  • 8.5. Packages used in this chapter
  • 8.6. Binary logistic regression: an example that will make you feel eel
  • 8.6.1. Preparing the data
  • 8.6.2. The main logistic regression analysis
  • 8.6.3. Basic logistic regression analysis using R
  • 8.6.4. Interpreting a basic logistic regression
  • 8.6.5. Model 1: Intervention only
  • 8.6.6. Model 2: Intervention and Duration as predictors
  • 8.6.7. Casewise diagnostics in logistic regression
  • 8.6.8. Calculating the effect size
  • 8.7. How to report logistic regression
  • 8.8. Testing assumptions: another example
  • 8.8.1. Testing for multicollinearity
  • 8.8.2. Testing for linearity of the logit
  • 8.9. Predicting several categories: multinomial logistic regression
  • 8.9.1. Running multinomial logistic regression in R
  • 8.9.2. Interpreting the multinomial logistic regression output
  • 8.9.3. Reporting the results
  • What have I discovered about statistics?
  • R packages used in this chapter
  • R functions used in this chapter
  • Key terms that I’ve discovered
  • Smart Alex’s tasks
  • Further reading
  • Interesting real research
  • 9 Comparing two means
  • 9.1. What will this chapter tell me?
  • 9.2. Packages used in this chapter
  • 9.3. Looking at differences
  • 9.3.1. A problem with error bar graphs of repeated-measures designs
  • 9.3.2. Step 1: calculate the mean for each participant
  • 9.3.3. Step 2: calculate the grand mean
  • 9.3.4. Step 3: calculate the adjustment factor
  • 9.3.5. Step 4: create adjusted values for each variable
  • 9.4. The t-test
  • 9.4.1. Rationale for the t-test
  • 9.4.2. The t-test as a general linear model
  • 9.4.3. Assumptions of the t-test
  • 9.5. The independent t-test
  • 9.5.1. The independent t-test equation explained
  • 9.5.2. Doing the independent t-test
  • 9.6. The dependent t-test
  • 9.6.1. Sampling distributions and the standard error
  • 9.6.2. The dependent t-test equation explained
  • 9.6.3. Dependent t-tests using R
  • 9.7. Between groups or repeated measures?
  • What have I discovered about statistics?
  • R packages used in this chapter
  • R functions used in this chapter
  • Key terms that I’ve discovered
  • Smart Alex’s tasks
  • Further reading
  • Interesting real research
  • 10 Comparing several means: ANOVA (GLM 1)
  • 10.1. What will this chapter tell me?
  • 10.2. The theory behind ANOVA
  • 10.2.1 Inflated error rates
  • 10.2.2. Interpreting F
  • 10.2.3. ANOVA as regression
  • 10.2.4. Logic of the F-ratio
  • 10.2.5. Total sum of squares (SST)
  • 10.2.6. Model sum of squares (SSM)
  • 10.2.7. Residual sum of squares (SSR)
  • 10.2.8. Mean squares
  • 10.2.9. The F-ratio
  • 10.3. Assumptions of ANOVA
  • 10.3.1. Homogeneity of variance
  • 10.3.2. Is ANOVA robust?
  • 10.4. Planned contrasts
  • 10.4.1. Choosing which contrasts to do
  • 10.4.2. Defining contrasts using weights
  • 10.4.3. Non-orthogonal comparisons
  • 10.4.4. Standard contrasts
  • 10.4.5. Polynomial contrasts: trend analysis
  • 10.5. Post hoc procedures
  • 10.5.1. Post hoc procedures and Type I (α) and Type II error rates
  • 10.5.2. Post hoc procedures and violations of test assumptions
  • 10.5.3. Summary of post hoc procedures
  • 10.6. One-way ANOVA using R
  • 10.6.1. Packages for one-way ANOVA in R
  • 10.6.2. General procedure for one-way ANOVA
  • 10.6.3. Entering data
  • 10.6.4. One-way ANOVA using R Commander
  • 10.6.5. Exploring the data
  • 10.6.6. The main analysis
  • 10.6.7. Planned contrasts using R
  • 10.6.8. Post hoc tests using R
  • 10.7. Calculating the effect size
  • 10.8. Reporting results from one-way independent ANOVA
  • What have I discovered about statistics?
  • R packages used in this chapter
  • R functions used in this chapter
  • Key terms that I’ve discovered
  • Smart Alex’s tasks
  • Further reading
  • Interesting real research
  • 11 Analysis of covariance, ANCOVA (GLM 2)
  • 11.1. What will this chapter tell me?
  • 11.2. What is ANCOVA?
  • 11.3. Assumptions and issues in ANCOVA
  • 11.3.1. Independence of the covariate and treatment effect
  • 11.3.2. Homogeneity of regression slopes
  • 11.4. ANCOVA using R
  • 11.4.1. Packages for ANCOVA in R
  • 11.4.2. General procedure for ANCOVA
  • 11.4.3. Entering data
  • 11.4.4. ANCOVA using R Commander
  • 11.4.5. Exploring the data
  • 11.4.6. Are the predictor variable and covariate independent?
  • 11.4.7. Fitting an ANCOVA model
  • 11.4.8. Interpreting the main ANCOVA model
  • 11.4.9. Planned contrasts in ANCOVA
  • 11.4.10. Interpreting the covariate
  • 11.4.11. Post hoc tests in ANCOVA
  • 11.4.12. Plots in ANCOVA
  • 11.4.13. Some final remarks
  • 11.4.14. Testing for homogeneity of regression slopes
  • 11.5. Robust ANCOVA
  • 11.6. Calculating the effect size
  • 11.7. Reporting results
  • What have I discovered about statistics?
  • R packages used in this chapter
  • R functions used in this chapter
  • Key terms that I’ve discovered
  • Smart Alex’s tasks
  • Further reading
  • Interesting real research
  • 12 Factorial ANOVA (GLM 3)
  • 12.1. What will this chapter tell me?
  • 12.2. Theory of factorial ANOVA (independent design)
  • 12.2.1. Factorial designs
  • 12.3. Factorial ANOVA as regression
  • 12.3.1. An example with two independent variables
  • 12.3.2. Extending the regression model
  • 12.4. Two-way ANOVA: behind the scenes
  • 12.4.1. Total sums of squares (SST)
  • 12.4.2. The model sum of squares (SSM)
  • 12.4.3. The residual sum of squares (SSR)
  • 12.4.4. The F-ratios
  • 12.5. Factorial ANOVA using R
  • 12.5.1. Packages for factorial ANOVA in R
  • 12.5.2. General procedure for factorial ANOVA
  • 12.5.3. Factorial ANOVA using R Commander
  • 12.5.4. Entering the data
  • 12.5.5. Exploring the data
  • 12.5.6. Choosing contrasts
  • 12.5.7. Fitting a factorial ANOVA model
  • 12.5.8. Interpreting factorial ANOVA
  • 12.5.9. Interpreting contrasts
  • 12.5.10. Simple effects analysis
  • 12.5.11. Post hoc analysis
  • 12.5.12. Overall conclusions
  • 12.5.13. Plots in factorial ANOVA
  • 12.6. Interpreting interaction graphs
  • 12.7. Robust factorial ANOVA
  • 12.8. Calculating effect sizes
  • 12.9. Reporting the results of two-way ANOVA
  • What have I discovered about statistics?
  • R packages used in this chapter
  • R functions used in this chapter
  • Key terms that I’ve discovered
  • Smart Alex’s tasks
  • Further reading
  • Interesting real research
  • 13 Repeated-measures designs (GLM 4)
  • 13.1. What will this chapter tell me?
  • 13.2. Introduction to repeated-measures designs
  • 13.2.1. The assumption of sphericity
  • 13.2.2. How is sphericity measured?
  • 13.2.3. Assessing the severity of departures from sphericity
  • 13.2.4. What is the effect of violating the assumption of sphericity?
  • 13.2.5. What do you do if you violate sphericity?
  • 13.3. Theory of one-way repeated-measures ANOVA
  • 13.3.1. The total sum of squares (SST)
  • 13.3.2. The within-participant sum of squares (SSW)
  • 13.3.3. The model sum of squares (SSM)
  • 13.3.4. The residual sum of squares (SSR)
  • 13.3.5. The mean squares
  • 13.3.6. The F-ratio
  • 13.3.7. The between-participant sum of squares
  • 13.4. One-way repeated-measures designs using R
  • 13.4.1. Packages for repeated measures designs in R
  • 13.4.2. General procedure for repeated-measures designs
  • 13.4.3. Repeated-measures ANOVA using R Commander
  • 13.4.4. Entering the data
  • 13.4.5. Exploring the data
  • 13.4.6. Choosing contrasts
  • 13.4.7. Analysing repeated measures: two ways to skin a .dat
  • 13.4.8. Robust one-way repeated-measures ANOVA
  • 13.5. Effect sizes for repeated-measures designs
  • 13.6. Reporting one-way repeated-measures designs
  • 13.7. Factorial repeated-measures designs
  • 13.7.1. Entering the data
  • 13.7.2. Exploring the data
  • 13.7.3. Setting contrasts
  • 13.7.4. Factorial repeated-measures ANOVA
  • 13.7.5. Factorial repeated-measures designs as a GLM
  • 13.7.6. Robust factorial repeated-measures ANOVA
  • 13.8. Effect sizes for factorial repeated-measures designs
  • 13.9. Reporting the results from factorial repeated-measures designs
  • What have I discovered about statistics?
  • R packages used in this chapter
  • R functions used in this chapter
  • Key terms that I’ve discovered
  • Smart Alex’s tasks
  • Further reading
  • Interesting real research
  • 14 Mixed designs (GLM 5)
  • 14.1. What will this chapter tell me?
  • 14.2. Mixed designs
  • 14.3. What do men and women look for in a partner?
  • 14.4. Entering and exploring your data
  • 14.4.1. Packages for mixed designs in R
  • 14.4.2. General procedure for mixed designs
  • 14.4.3. Entering the data
  • 14.4.4. Exploring the data
  • 14.5. Mixed ANOVA
  • 14.6. Mixed designs as a GLM
  • 14.6.1. Setting contrasts
  • 14.6.2. Building the model
  • 14.6.3. The main effect of gender
  • 14.6.4. The main effect of looks
  • 14.6.5. The main effect of personality
  • 14.6.6. The interaction between gender and looks
  • 14.6.7. The interaction between gender and personality
  • 14.6.8. The interaction between looks and personality
  • 14.6.9. The interaction between looks, personality and gender
  • 14.6.10. Conclusions
  • 14.7. Calculating effect sizes
  • 14.8. Reporting the results of mixed ANOVA
  • 14.9. Robust analysis for mixed designs
  • What have I discovered about statistics?
  • R packages used in this chapter
  • R functions used in this chapter
  • Key terms that I’ve discovered
  • Smart Alex’s tasks
  • Further reading
  • Interesting real research
  • 15 Non-parametric tests
  • 15.1. What will this chapter tell me?
  • 15.2. When to use non-parametric tests
  • 15.3. Packages used in this chapter
  • 15.4. Comparing two independent conditions: the Wilcoxon rank-sum test
  • 15.4.1. Theory of the Wilcoxon rank-sum test
  • 15.4.2. Inputting data and provisional analysis
  • 15.4.3. Running the analysis using R Commander
  • 15.4.4. Running the analysis using R
  • 15.4.5. Output from the Wilcoxon rank-sum test
  • 15.4.6. Calculating an effect size
  • 15.4.7. Writing the results
  • 15.5. Comparing two related conditions: the Wilcoxon signed-rank test
  • 15.5.1. Theory of the Wilcoxon signed-rank test
  • 15.5.2. Running the analysis with R Commander
  • 15.5.3. Running the analysis using R
  • 15.5.4. Wilcoxon signed-rank test output
  • 15.5.5. Calculating an effect size
  • 15.5.6. Writing the results
  • 15.6. Differences between several independent groups: the Kruskal–Wallis test
  • 15.6.1. Theory of the Kruskal–Wallis test
  • 15.6.2. Inputting data and provisional analysis
  • 15.6.3. Doing the Kruskal–Wallis test using R Commander
  • 15.6.4. Doing the Kruskal–Wallis test using R
  • 15.6.5. Output from the Kruskal–Wallis test
  • 15.6.6. Post hoc tests for the Kruskal–Wallis test
  • 15.6.7. Testing for trends: the Jonckheere–Terpstra test
  • 15.6.8. Calculating an effect size
  • 15.6.9. Writing and interpreting the results
  • 15.7. Differences between several related groups: Friedman’s ANOVA
  • 15.7.1. Theory of Friedman’s ANOVA
  • 15.7.2. Inputting data and provisional analysis
  • 15.7.3. Doing Friedman’s ANOVA in R Commander
  • 15.7.4. Friedman’s ANOVA using R
  • 15.7.5. Output from Friedman’s ANOVA
  • 15.7.6. Post hoc tests for Friedman’s ANOVA
  • 15.7.7. Calculating an effect size
  • 15.7.8. Writing and interpreting the results
  • What have I discovered about statistics?
  • R packages used in this chapter
  • R functions used in this chapter
  • Key terms that I’ve discovered
  • Smart Alex’s tasks
  • Further reading
  • Interesting real research
  • 16 Multivariate analysis of variance (MANOVA)
  • 16.1. What will this chapter tell me?
  • 16.2. When to use MANOVA
  • 16.3. Introduction: similarities to and differences from ANOVA
  • 16.3.1. Words of warning
  • 16.3.2. The example for this chapter
  • 16.4. Theory of MANOVA
  • 16.4.1. Introduction to matrices
  • 16.4.2. Some important matrices and their functions
  • 16.4.3. Calculating MANOVA by hand: a worked example
  • 16.4.4. Principle of the MANOVA test statistic
  • 16.5. Practical issues when conducting MANOVA
  • 16.5.1. Assumptions and how to check them
  • 16.5.2. Choosing a test statistic
  • 16.5.3. Follow-up analysis
  • 16.6. MANOVA using R
  • 16.6.1. Packages for factorial ANOVA in R
  • 16.6.2. General procedure for MANOVA
  • 16.6.3. MANOVA using R Commander
  • 16.6.4. Entering the data
  • 16.6.5. Exploring the data
  • 16.6.6. Setting contrasts
  • 16.6.7. The MANOVA model
  • 16.6.8. Follow-up analysis: univariate test statistics
  • 16.6.9. Contrasts
  • 16.7. Robust MANOVA
  • 16.8. Reporting results from MANOVA
  • 16.9. Following up MANOVA with discriminant analysis
  • 16.10. Reporting results from discriminant analysis
  • 16.11. Some final remarks
  • 16.11.1. The final interpretation
  • 16.11.2. Univariate ANOVA or discriminant analysis?
  • What have I discovered about statistics?
  • R packages used in this chapter
  • R functions used in this chapter
  • Key terms that I’ve discovered
  • Smart Alex’s tasks
  • Further reading
  • Interesting real research
  • 17 Exploratory factor analysis
  • 17.1. What will this chapter tell me?
  • 17.2. When to use factor analysis
  • 17.3. Factors
  • 17.3.1. Graphical representation of factors
  • 17.3.2. Mathematical representation of factors
  • 17.3.3. Factor scores
  • 17.3.4. Choosing a method
  • 17.3.5. Communality
  • 17.3.6. Factor analysis vs. principal components analysis
  • 17.3.7. Theory behind principal components analysis
  • 17.3.8. Factor extraction: eigenvalues and the scree plot
  • 17.3.9. Improving interpretation: factor rotation
  • 17.4. Research example
  • 17.4.1. Sample size
  • 17.4.2. Correlations between variables
  • 17.4.3. The distribution of data
  • 17.5. Running the analysis with R Commander
  • 17.6. Running the analysis with R
  • 17.6.1. Packages used in this chapter
  • 17.6.2. Initial preparation and analysis
  • 17.6.3. Factor extraction using R
  • 17.6.4. Rotation
  • 17.6.5. Factor scores
  • 17.6.6. Summary
  • 17.7. How to report factor analysis
  • 17.8. Reliability analysis
  • 17.8.1. Measures of reliability
  • 17.8.2. Interpreting Cronbach’s α (some cautionary tales …)
  • 17.8.3. Reliability analysis with R Commander
  • 17.8.4. Reliability analysis using R
  • 17.8.5. Interpreting the output
  • 17.9. Reporting reliability analysis
  • What have I discovered about statistics?
  • R packages used in this chapter
  • R functions used in this chapter
  • Key terms that I’ve discovered
  • Smart Alex’s tasks
  • Further reading
  • Interesting real research
  • 18 Categorical data
  • 18.1. What will this chapter tell me?
  • 18.2. Packages used in this chapter
  • 18.3. Analysing categorical data
  • 18.4. Theory of analysing categorical data
  • 18.4.1. Pearson’s chi-square test
  • 18.4.2. Fisher’s exact test
  • 18.4.3. The likelihood ratio
  • 18.4.4. Yates’s correction
  • 18.5. Assumptions of the chi-square test
  • 18.6. Doing the chi-square test using R
  • 18.6.1. Entering data: raw scores
  • 18.6.2. Entering data: the contingency table
  • 18.6.3. Running the analysis with R Commander
  • 18.6.4. Running the analysis using R
  • 18.6.5. Output from the CrossTable() function
  • 18.6.6. Breaking down a significant chi-square test with standardized residuals
  • 18.6.7. Calculating an effect size
  • 18.6.8. Reporting the results of chi-square
  • 18.7. Several categorical variables: loglinear analysis
  • 18.7.1. Chi-square as regression
  • 18.7.2. Loglinear analysis
  • 18.8. Assumptions in loglinear analysis
  • 18.9. Loglinear analysis using R
  • 18.9.1. Initial considerations
  • 18.9.2. Loglinear analysis as a chi-square test
  • 18.9.3. Output from loglinear analysis as a chi-square test
  • 18.9.4. Loglinear analysis
  • 18.10. Following up loglinear analysis
  • 18.11. Effect sizes in loglinear analysis
  • 18.12. Reporting the results of loglinear analysis
  • What have I discovered about statistics?
  • R packages used in this chapter
  • R functions used in this chapter
  • Key terms that I’ve discovered
  • Smart Alex’s tasks
  • Further reading
  • Interesting real research
  • 19 Multilevel linear models
  • 19.1. What will this chapter tell me?
  • 19.2. Hierarchical data
  • 19.2.1. The intraclass correlation
  • 19.2.2. Benefits of multilevel models
  • 19.3. Theory of multilevel linear models
  • 19.3.1. An example
  • 19.3.2. Fixed and random coefficients
  • 19.4. The multilevel model
  • 19.4.1. Assessing the fit and comparing multilevel models
  • 19.4.2. Types of covariance structures
  • 19.5. Some practical issues
  • 19.5.1. Assumptions
  • 19.5.2. Sample size and power
  • 19.5.3. Centring variables
  • 19.6. Multilevel modelling in R
  • 19.6.1. Packages for multilevel modelling in R
  • 19.6.2. Entering the data
  • 19.6.3. Picturing the data
  • 19.6.4. Ignoring the data structure: ANOVA
  • 19.6.5. Ignoring the data structure: ANCOVA
  • 19.6.6. Assessing the need for a multilevel model
  • 19.6.7. Adding in fixed effects
  • 19.6.8. Introducing random slopes
  • 19.6.9. Adding an interaction term to the model
  • 19.7. Growth models
  • 19.7.1. Growth curves (polynomials)
  • 19.7.2. An example: the honeymoon period
  • 19.7.3. Restructuring the data
  • 19.7.4. Setting up the basic model
  • 19.7.5. Adding in time as a fixed effect
  • 19.7.6. Introducing random slopes
  • 19.7.7. Modelling the covariance structure
  • 19.7.8. Comparing models
  • 19.7.9. Adding higher-order polynomials
  • 19.7.10. Further analysis
  • 19.8. How to report a multilevel model
  • What have I discovered about statistics?
  • R packages used in this chapter
  • R functions used in this chapter
  • Key terms that I’ve discovered
  • Smart Alex’s tasks
  • Further reading
  • Interesting real research
  • Epilogue: life after discovering statistics
  • Troubleshooting R
  • Glossary
  • Appendix
  • A.1. Table of the standard normal distribution
  • A.2. Critical values of the t-distribution
  • A.3. Critical values of the F-distribution
  • A.4. Critical values of the chi-square distribution
  • References
  • Index
  • Functions in R
  • Packages in R
Show More

Additional information

Veldu vöru

Leiga á rafbók í 180 daga, Rafbók til eignar

Reviews

There are no reviews yet.

Be the first to review “Discovering Statistics Using R”

Netfang þitt verður ekki birt. Nauðsynlegir reitir eru merktir *

Aðrar vörur

0
    0
    Karfan þín
    Karfan þín er tómAftur í búð