Description
Efnisyfirlit
- Cover
- Half Title
- Dedication
- Title Page
- Copyright Page
- Table of Contents
- List of figures and tables
- Preface to the third edition
- Acknowledgements
- Cover image details
- 1 The Quaternary record
- 1.1 Introduction
- 1.2 Interpreting the Quaternary record
- 1.3 The status of the Quaternary in the geological timescale
- 1.4 The duration of the Quaternary
- 1.5 The development of Quaternary studies
- 1.5.1 Historical developments
- 1.5.2 Recent developments
- 1.6 The framework of the Quaternary
- 1.7 The causes of climatic change
- 1.8 The scope of this book
- Notes
- 2 Geomorphological evidence
- 2.1 Introduction
- 2.2 Methods
- 2.2.1 Field methods
- 2.2.1.1 Field mapping
- 2.2.1.2 Instrumental levelling
- 2.2.2 Remote sensing
- 2.2.2.1 Aerial photography
- 2.2.2.2 Satellite imagery
- 2.2.2.3 Radar
- 2.2.2.4 Sonar and seismic sensing
- 2.2.2.5 Digital elevation/terrain modelling
- 2.3 Glacial landforms
- 2.3.1 Extent of ice cover
- 2.3.2 Geomorphological evidence and the extent of ice sheets and glaciers during the last cold stage
- 2.3.2.1 Northern Europe
- 2.3.2.2 Britain and Ireland
- 2.3.2.3 North America
- 2.3.3 Direction of ice movement
- 2.3.3.1 Striations
- 2.3.3.2 Friction cracks
- 2.3.3.3 Ice-moulded (streamlined) bedrock
- 2.3.3.4 Streamlined glacial deposits
- 2.3.4 Reconstruction of former ice masses
- 2.3.4.1 Ice sheet modelling
- 2.3.4.2 Ice caps and glaciers
- 2.3.5 Palaeoclimatic inferences using former glacier elevations
- 2.3.5.1 Cirque floor altitude (CFA) and toe-to-headwall (THAR) methods
- 2.3.5.2 ELA/FLA method
- 2.4 Periglacial landforms
- 2.4.1 Palaeoclimatic inferences based on periglacial evidence
- 2.4.1.1 Rock glaciers
- 2.4.1.2 Pingos and palsas
- 2.4.1.3 Pronival (‘protalus’) ramparts
- 2.5 Sea-level change
- 2.5.1 Relative and ‘absolute’ sea-level changes
- 2.5.2 Eustatic changes in sea level
- 2.5.2.1 Pre-Quaternary eustatic changes
- 2.5.2.2 Quaternary eustatic changes
- 2.5.3 Tectonic influences
- 2.5.4 Glacio- and hydro-isostasy
- 2.5.5 Shoreline sequences in areas affected by glacio-isostasy
- 2.5.6 Palaeoenvironmental significance of sea-level changes
- 2.6 River terraces
- 2.6.1 Origins of river terraces
- 2.6.1.1 Eustatic changes in sea level
- 2.6.1.2 Climatic change
- 2.6.1.3 Glaciation
- 2.6.1.4 Tectonic changes
- 2.6.1.5 Human activity
- 2.6.2 River terraces and palaeoenvironmental reconstruction
- 2.6.3 The terraces of the River Thames
- 2.7 Quaternary landforms in low latitudes
- 2.7.1 Pluvial lakes
- 2.7.2 Dunefields
- 2.7.3 Fluvial landforms
- 2.7.4 Weathering crusts
- 2.8 Conclusions
- Notes
- 3 Lithological evidence
- 3.1 Introduction
- 3.2 Field and laboratory methods
- 3.2.1 Sediment sections
- 3.2.2 Coring
- 3.2.3 Laboratory methods
- 3.2.3.1 Particle size measurements
- 3.2.3.2 Particle shape
- 3.2.3.3 Surface textures of quartz particles
- 3.2.3.4 Organic carbon content
- 3.2.3.5 Metallic elements
- 3.2.3.6 Heavy minerals
- 3.2.3.7 Clay mineralogy
- 3.2.3.8 Mineral magnetic analysis
- 3.2.3.9 Stable isotope analysis
- 3.3 Glacial sediments
- 3.3.1 Introduction
- 3.3.2 The nature of glacial sediments
- 3.3.2.1 Unstratified and stratified sediments
- 3.3.2.2 Glacigenic facies
- 3.3.3 The classification of tills
- 3.3.3.1 Lodgement, melt-out and ‘flow’ tills
- 3.3.3.2 Deformation tills
- 3.3.3.3 Paraglacial deposits
- 3.3.4 The influence of the thermal regime of glacier ice
- 3.3.5 Analysis of glacigenic sequences
- 3.3.5.1 Particle size and shape analysis
- 3.3.5.2 Lithofacies interpretations
- 3.3.6 Ice-directional indicators
- 3.3.6.1 Erratics
- 3.3.6.2 Till fabrics
- 3.3.6.3 Properties of the till matrix
- 3.4 Periglacial sediments
- 3.4.1 Introduction
- 3.4.2 Structures associated with permafrost
- 3.4.3 Palaeoclimatic significance of periglacial structures
- 3.5 Palaeosols
- 3.5.1 Introduction
- 3.5.2 The nature of palaeosols
- 3.5.3 Analysis of palaeosols
- 3.5.4 Palaeosols and Quaternary environments
- 3.6 Wind-blown sediments
- 3.6.1 Introduction
- 3.6.2 Loess stratigraphy
- 3.6.3 Mid-latitude sand belts (coversands)
- 3.6.4 Low-latitude ‘sand seas’
- 3.6.5 Wind-blown sediments and palaeoenvironmental reconstructions
- 3.7 Lake-level records from low-latitude regions
- 3.7.1 Introduction
- 3.7.2 Pluvial lake sediment sequences
- 3.7.3 Lake-level changes and Quaternary palaeoclimates
- 3.8 Cave sediments and carbonate deposits
- 3.8.1 Introduction
- 3.8.2 Detrital sediment in caves
- 3.8.3 Speleothem
- 3.8.4 Speleothem growth and environmental reconstruction
- 3.8.4.1 Speleothem growth and climatic change
- 3.8.4.2 Stable isotope ratios in cave speleothem
- 3.8.4.3 Trace elements in cave speleothem
- 3.8.4.4 Speleothem formation and sea-level variations
- 3.8.4.5 Speleothem formation and tectonic activity
- 3.8.4.6 Speleothem formation and rates of denudation
- 3.8.5 Other carbonate deposits
- 3.9 Lake, mire and bog sediments
- 3.9.1 Introduction
- 3.9.2 The nature of lake and bog sediments
- 3.9.3 Palaeoenvironmental evidence from lake sediments
- 3.9.3.1 Lake sediments and landscape changes
- 3.9.3.2 Lake-level variations and climatic changes
- 3.9.3.3 Lake sediments and palaeotemperatures
- 3.9.4 Palaeoenvironmental evidence from mire and bog sediments
- 3.9.4.1 Palaeoprecipitation records from ombrotrophic peats
- 3.9.4.2 Stable isotope records from ombrotrophic peats
- 3.9.4.3 Human impact recorded in ombrotrophic peat
- 3.10 The deep-sea sediment record
- 3.10.1 The nature and origin of ocean sediments
- 3.10.2 Oxygen isotope ratios and the ocean sediment record
- 3.10.2.1 General principles
- 3.10.2.2 Glacial ice storage and the marine oxygen isotope record
- 3.10.2.3 Ice volumes, sea level and the marine oxygen isotope record
- 3.10.2.4 Sea-surface temperatures and the marine oxygen isotope record
- 3.10.3 Limitations of oxygen isotope analysis
- 3.10.3.1 Stratigraphic resolution
- 3.10.3.2 Sediment mixing
- 3.10.3.3 Isotopic equilibrium between test carbonate and ocean water
- 3.10.3.4 Carbonate dissolution and diagenesis
- 3.10.4 Carbon isotopes in marine sediments
- 3.11 Ice-core stratigraphy
- 3.11.1 A brief history of deep-ice coring
- 3.11.2 Ice masses as palaeoenvironmental archives
- 3.11.3 Analysis of ice cores
- 3.11.3.1 Annual ice increments
- 3.11.3.2 Dust content
- 3.11.3.3 Chemical content
- 3.11.3.4 Stable isotope records
- 3.11.3.5 Other trace substances
- 3.11.4 Palaeoenvironmental significance of ice cores
- 3.12 Conclusions
- Notes
- 4 Biological evidence
- 4.1 Introduction
- 4.1.1 The nature of the Quaternary fossil record
- 4.1.2 The taphonomy of Quaternary fossil assemblages
- 4.1.3 The interpretation of Quaternary fossil assemblages
- 4.2 Pollen analysis
- 4.2.1 Introduction
- 4.2.2 The nature of pollen and spores
- 4.2.3 Field and laboratory work
- 4.2.4 Pollen diagrams
- 4.2.5 The interpretation of pollen diagrams
- 4.2.6 Applications of pollen stratigraphy
- 4.2.6.1 Local vegetation reconstructions
- 4.2.6.2 Regional vegetation reconstructions
- 4.2.6.3 Space-time reconstructions
- 4.2.6.4 Human impact on vegetation cover
- 4.2.6.5 Pollen data and climatic reconstructions
- 4.3 Diatom analysis
- 4.3.1 Introduction
- 4.3.2 The nature and ecology of diatoms
- 4.3.3 Field and laboratory methods
- 4.3.4 The interpretation of Quaternary diatom records
- 4.3.5 Applications of diatom analysis
- 4.3.5.1 Diatoms as salinity indicators
- 4.3.5.2 Diatoms and pH
- 4.3.5.3 Diatoms and trophic status
- 4.3.5.4 Diatoms and the archaeological record
- 4.3.5.5 Other environmental applications
- 4.4 Plant macrofossil analysis
- 4.4.1 Introduction
- 4.4.2 The nature of plant macrofossils
- 4.4.3 Field and laboratory work
- 4.4.4 Data presentation
- 4.4.5 The interpretation of plant macrofossil data
- 4.4.6 Palaeoenvironmental applications of plant macrofossil studies
- 4.4.6.1 Palaeoclimatic reconstructions
- 4.4.6.2 Forest history
- 4.4.6.3 Charcoal and fire history
- 4.4.6.4 Archaeological records
- 4.5 Fossil insect remains
- 4.5.1 Introduction
- 4.5.2 Coleoptera
- 4.5.3 Laboratory methods
- 4.5.4 Coleopteran analysis and Quaternary environments
- 4.5.4.1 Habitat preferences
- 4.5.4.2 Palaeoclimatic inferences based on coleopteran assemblages
- 4.5.4.3 Insect fossils and archaeology
- 4.5.5 Chironomidae
- 4.6 Non-marine Mollusca
- 4.6.1 Introduction
- 4.6.2 The nature and distribution of molluscs
- 4.6.3 Field and laboratory work
- 4.6.4 Taphonomy of non-marine molluscan assemblages
- 4.6.5 Interpretation of non-marine molluscan assemblages: habitat groups and indices of species diversity
- 4.6.6 Applications of Quaternary non-marine molluscan records
- 4.6.6.1 Biostratigraphic correlation
- 4.6.6.2 Palaeoclimatic reconstructions
- 4.6.6.3 Archaeological relevance
- 4.7 Marine Mollusca
- 4.7.1 Introduction
- 4.7.2 Analysis of marine molluscan assemblages
- 4.7.3 Marine Mollusca and palaeoclimatic inferences
- 4.7.4 Other applications of fossil marine molluscan records
- 4.8 Ostracod analysis
- 4.8.1 The nature and distribution of ostracods
- 4.8.2 Collection and identification
- 4.8.3 Ostracoda in Quaternary studies
- 4.9 Foraminiferal analysis
- 4.9.1 The nature and distribution of Foraminifera
- 4.9.2 Collection and identification
- 4.9.3 Foraminifera in Quaternary inshore and shelf sediments
- 4.9.3.1 Sea-level change
- 4.9.3.2 Shallow marine water mass and temperature variations
- 4.9.3.3 Other palaeoenvironmental applications
- 4.10 Micropalaeontology of deep-sea sediments
- 4.10.1 Introduction
- 4.10.2 Radiolaria
- 4.10.3 Coccolithophores
- 4.10.4 Dinoflagellates (dinocysts)
- 4.10.5 Marine microfossils in ocean sediments
- 4.10.6 Laboratory separation of marine microfossils
- 4.10.7 Marine palaeoclimatology
- 4.10.8 Marine palaeoproductivity and palaeocirculation
- 4.11 Vertebrate remains
- 4.11.1 Introduction
- 4.11.2 The structure of teeth and bones
- 4.11.3 Fossilization of bone material
- 4.11.4 Field and laboratory techniques
- 4.11.5 The taphonomy of fossil vertebrate assemblages
- 4.11.5.1 Cave and fissure deposits
- 4.11.5.2 Lacustrine sediments
- 4.11.5.3 Fluvial sediments
- 4.11.6 Quaternary vertebrate records
- 4.11.6.1 Vertebrate biostratigraphy
- 4.11.6.2 Vertebrate biogeography
- 4.11.6.3 Vertebrate fossils and Quaternary environments
- 4.11.6.4 Vertebrate fossils and faunal evolution
- 4.12 Other fossil groups
- 4.12.1 Chrysophytes
- 4.12.2 Cladocera
- 4.12.3 Coral polyps
- 4.12.4 Fungal remains
- 4.12.5 Testate amoebae
- 4.12.6 Biomarkers (ancient biomolecules)
- 4.13 Multi-proxy palaeoecological studies
- 4.14 Conclusions
- Notes
- 5 Dating methods
- 5.1 Introduction
- 5.2 Precision and accuracy in Quaternary dating
- 5.3 Radiometric dating techniques
- 5.3.1 The nucleus and radioactivity
- 5.3.2 Radiocarbon dating
- 5.3.2.1 General principles
- 5.3.2.2 Measurement of 14C activity
- 5.3.2.3 Quality assurance in radiocarbon dating
- 5.3.2.4 Sources of error in radiocarbon dating
- 5.3.2.5 Radiocarbon dating of soils
- 5.3.2.6 Calibration of the radiocarbon timescale
- 5.3.3 Argon-isotope dating
- 5.3.3.1 Potassium-argon dating
- 5.3.3.2 Argon-argon (Ar/Ar) dating
- 5.3.3.3 Problems and limitations of argon-isotope dating
- 5.3.3.4 Some applications of argon-isotope dating
- 5.3.4 Uranium-series (U-series) dating
- 5.3.4.1 General principles
- 5.3.4.2 Measurement, problems and age range
- 5.3.4.3 Some applications of U-series dating
- 5.3.5 Fission track dating
- 5.3.5.1 General principles
- 5.3.5.2 Measurement and problems
- 5.3.5.3 Some applications of fission track dating
- 5.3.6 Luminescence dating
- 5.3.6.1 General principles
- 5.3.6.2 Measurement and problems
- 5.3.6.3 Developments in luminescence dating
- 5.3.6.4 Age ranges and applications of luminescence dating
- 5.3.7 Electron spin resonance (ESR) dating
- 5.3.7.1 General principles and measurement
- 5.3.7.2 Sources of error in ESR dating
- 5.3.7.3 Some applications of ESR dating
- 5.3.8 Cosmogenic radionuclide (CRN) dating
- 5.3.8.1 General principles
- 5.3.8.2 Measurement and problems
- 5.3.8.3 Some applications of CRN dating
- 5.3.9 Short-lived radioactive isotopes
- 5.3.9.1 Lead-210
- 5.3.9.2 Caesium-137
- 5.3.9.3 Silicon-32
- 5.4 Incremental dating methods
- 5.4.1 Dendrochronology
- 5.4.1.1 General principles
- 5.4.1.2 Measurement and problems
- 5.4.1.3 Dendrochronological records
- 5.4.1.4 Dendroclimatology
- 5.4.2 Varve chronology
- 5.4.2.1 The nature of varved sediments
- 5.4.2.2 Clastic varves
- 5.4.2.3 Organic (biogenic) varves)
- 5.4.2.4 Chemical varves
- 5.4.2.5 Complex varves
- 5.4.2.6 Sources of error in varve counting
- 5.4.2.7 Applications of varve chronologies
- 5.4.3 Annual layers in glacier ice
- 5.4.3.1 General principles
- 5.4.3.2 Errors in ice-core chronologies
- 5.4.3.3 Ice-core chronologies
- 5.4.4 Lichenometry
- 5.4.4.1 General principles
- 5.4.4.2 Sources of error in lichenometric dating
- 5.4.4.3 Some applications of lichenometry
- 5.4.5 Other materials dated by annual increments
- 5.4.5.1 Speleothems
- 5.4.5.2 Sclerochronology
- 5.5 Age-equivalent stratigraphic markers
- 5.5.1 Palaeomagnetism
- 5.5.1.1 Geomagnetic field and remanent magnetism
- 5.5.1.2 Magnetostratigraphy
- 5.5.2 Tephrochronology
- 5.5.2.1 General principles
- 5.5.2.2 Sources of error in tephrochronology
- 5.5.2.3 Applications of tephrochronology
- 5.5.3 Oxygen isotope chronology
- 5.5.4 Biostratigraphy and molecular clocks
- 5.6 Relative chronology based on processes of chemical alteration
- 5.6.1 Amino-acid geochronology
- 5.6.1.1 Chemistry of proteins
- 5.6.1.2 Amino-acid diagenesis
- 5.6.1.3 Aminostratigraphy and age control
- 5.6.1.4 Problems with amino-acid geochronology
- 5.6.1.5 Recent developments in amino-acid geochronology
- 5.6.1.6 Some applications of amino-acid geochronology
- 5.6.2 Fluorine, uranium and nitrogen content of fossil bones
- 5.6.3 Obsidian hydration dating (OHD)
- 5.6.3.1 General principles
- 5.6.3.2 Problems with obsidian hydration dating
- 5.6.3.3 Some applications of obsidian hydration dating
- 5.6.4 Weathering characteristics of rock surfaces
- 5.6.4.1 General principles
- 5.6.4.2 Problems in using surface weathering features as indicators of relative age
- 5.6.4.3 Some applications of surface weathering dating
- 5.6.5 Pedogenesis
- 5.6.5.1 General principles
- 5.6.5.2 Problems in using pedogenesis as a basis for dating
- 5.6.5.3 Some applications of relative dating based on degree of pedogenesis
- 5.7 Stratigraphic a n d temporal resolution
- 5.8 Conclusions
- Notes
- 6 Approaches to Quaternary stratigraphy and correlation
- 6.1 Introduction
- 6.2 Stratigraphic subdivision
- 6.2.1 Principles of Quaternary stratigraphy
- 6.2.2 Stratotypes
- 6.2.3 Elements of Quaternary stratigraphy
- 6.2.3.1 Lithostratigraphy
- 6.2.3.2 Biostratigraphy
- 6.2.3.3 Morphostratigraphy
- 6.2.3.4 Soil stratigraphy
- 6.2.3.5 Oxygen isotope stratigraphy
- 6.2.3.6 Climatostratigraphy
- 6.2.3.7 Chronostratigraphy
- 6.3 Time-stratigraphic correlation
- 6.3.1 Principles of Quaternary correlation
- 6.3.2 Bases for time-stratigraphic correlation
- 6.3.2.1 Palaeomagnetic correlation
- 6.3.2.2 Correlation using tephra layers
- 6.3.2.3 Correlation using palaeosols
- 6.3.2.4 Shoreline correlation
- 6.3.2.5 Correlation on the basis of radiometric dating
- 6.3.2.6 Event stratigraphy and correlation
- 6.3.2.7 Correlation using the marine oxygen isotope record
- 6.3.3 Correlation between continental, marine and ice-core records
- 6.3.3.1 Long-term correlation on Milankovitch timescales
- 6.3.3.2 Correlation on sub-Milankovitch timescales
- 6.3.3.3 Synchronizing records of past environmental change
- 6.4 Conclusions
- 7 Global environmental change during the Quaternary
- 7.1 Introduction
- 7.2 Environmental simulation models (ESMs)
- 7.2.1 Introduction
- 7.2.2 Box models
- 7.2.3 General circulation models (GCMs)
- 7.2.4 Earth system models of intermediate complexity (EMICs)
- 7.2.5 Transient simulations
- 7.2.6 Palaeodata-model comparisons
- 7.2.7 Limitations of ESMs
- 7.2.8 The importance of ESMs in Quaternary research
- 7.3 Climatic change over Milankovitch timescales
- 7.3.1 Introduction
- 7.3.2 The Mid-Pleistocene Transition (MPT)
- 7.3.3 The glacial-interglacial cycles of the last 800 ka
- 7.3.4 Overview
- 7.4 Environmental change over sub-orbital (millennial) timescales
- 7.4.1 Introduction
- 7.4.2 Ice-ocean-climate interplay in the North Atlantic
- 7.4.3 A bipolar teleconnection
- 7.4.4 Global teleconnections: linking mechanisms
- 7.4.5 Overview
- 7.5 The Last Termination
- 7.5.1 Introduction
- 7.5.2 Definition of the Last Termination
- 7.5.3 Onset of the Last Termination
- 7.5.4 Global teleconnections during the Last Termination
- 7.5.5 Synchronizing records of Lateglacial age
- 7.5.5.1 Introduction
- 7.5.5.2 Lateglacial stratigraphy and chronology
- 7.5.5.3 Lateglacial age models and correlation procedures
- 7.5.5.4 Rapid environmental change during the Lateglacial
- 7.6. Climate and the Holocene
- 7.6.1 Introduction
- 7.6.2 Holocene climate trends
- 7.6.3 Holocene climatic events
- 7.6.3.1 The Pleistocene-Holocene transition
- 7.6.3.2 The 8.2 ka event
- 7.6.3.3 The 4.2 ka event
- 7.6.3.4 The 2.8 ka event
- 7.6.3.5 The Little Ice Age
- 7.6.4 Holocene climatic cycles
- 7.6.4.1 Late Holocene solar cycles
- 7.6.4.2 El Nino-Southern Oscillation (ENSO)
- 7.6.4.3 Late Holocene Atlantic and Pacific Oscillations
- 7.6.5 People and climate
- 7.6.5.1 The greenhouse effect
- 7.6.5.2 Early human impact?
- 7.6.5.3 Delayed glaciation?
- 7.6.6 The Anthropocene
- 7.7 Concluding remarks
- Notes
- References
- Index
Reviews
There are no reviews yet.