Item Response Theory

Höfundur Frank B. Baker

Útgefandi Taylor & Francis

Snið Page Fidelity

Print ISBN 9781032477923

Útgáfa 2

Útgáfuár 2004

6.790 kr.

Description

Efnisyfirlit

  • Half Title
  • Title Page
  • Copyright Page
  • Dedication
  • Preface to the Second Edition
  • References
  • Preface to the First Edition
  • References
  • Contents
  • 1. The Item Characteristic Curve: Dichotomous Response
  • 1.1 Introduction
  • 1.2 The Item Characteristic Curve
  • 1.3 Two Item Characteristic Curve Models
  • 1.3.1 The Normal Ogive Model
  • 1.3.2 The Logistic Ogive Model
  • 1.4 Extension of the Item Characteristic Curve Models: Dichotomous Scoring
  • 1.4.1 Birnbaum’s Three-paralneter Model
  • 1.4.2 The One-parameter Logistic Model-The Rasch Model
  • 1.5 Summary
  • 2. Estimating the Parameters of an Item Characteristic Curve
  • 2.1 Introduction
  • 2.2 Maximum Likelihood Estimation: Normal Ogive Model
  • 2.3 Maximum Likelihood Estimation: Logistic Model
  • 2.4 Influence of the Weighting Coefficients
  • 2.5 The Item Log-Likelihood Surface
  • 2.6 Maximum Likelihood Estimation: Three-Parameter Model
  • 2.7 Minimum X2 and Minimum Transform X2 Estimations
  • 2.7.1 Minimum X2 Estimation
  • 2.7.2 Minimum Transform X2 Estimation
  • 2.8 Summary
  • 3. Maximum Likelihood Estimation of Examinee Ability
  • 3.1 Introduction
  • 3.2 Maximum Likelihood Estimation of Ability
  • 3.2.1 Normal Model
  • 3.2.2 Logistic Model
  • 3.2.3 Birnbaum’s Three-Parameter (Logistic) Model
  • 3.3 Information Functions
  • 3.3.1 Item Information Function
  • 3.3.2 Samejima’s Approach to the Item Information Function
  • 3.3.3 Test Information Function
  • 3.4 Summary
  • 4. Procedures for Estimating Both Ability and Item Parameters.
  • 4.1 Introduction
  • 4.2 Joint Maximum Likelihood Estimation: The Birnbaum Paradigm
  • 4.2.1 Some Additional Facets of the Birnbaum Paradigm
  • 4.2.2 Quality of the Parameter Estimates
  • 4.3 Summary
  • 5. The Rasch Model
  • 5.1 Introduction
  • 5.2 The Rasch Model
  • 5.3 Separation of Parameters
  • 5.4 Specific Objectivity
  • 5.5 Conditional Maximum Likelihood Estimation Procedures
  • 5.6 Application of the JMLE Procedure to the Rasch Model
  • 5.6.1 Implementation of the JMLE Paradigm
  • 5.6.2 Bias of the Parameter Estimates
  • 5.7 Measuring the Goodness of Fit of the Rasch Model
  • 5.7.1 Chi-square Tests for Goodness of Fit
  • 5.7.2 Likelihood Ratio Tests for Goodness of Fit
  • 5.8 The Rasch Model and Additive Conjoint Measurement
  • 5.9 Research Related to the Rasch Model
  • 5.10 Summary
  • 6. Parameter Estimation via MMLE and an EM Algorithm
  • 6.1 Introduction
  • 6.2 Item Parameter Estimation via Marginal Maximum Likelihood
  • 6.3 The Bock and Lieberman Solution
  • 6.3.1 Quadrature Distributions
  • 6.4 The Bock and Aitkin Solution
  • 6.4.1 Some Background on the EM Algorithm
  • 6.5 Summary
  • 7. Bayesian Parameter Estimation Procedures
  • 7.1 Introduction
  • 7.2 The Bayesian Approach to Parameter Estimation
  • 7.3 The Marginalized Bayesian Estimation Procedure
  • 7.4 Marginalized Bayesian Item Parameter Estimationin PC-BILOG
  • 7.4.1 The Likelihood Component
  • 7.4.2 The Prior Distribution Component
  • 7.4.3 Bayesian Modal Estimation via EM
  • 7.5 Estimation of Ability
  • 7.5.1 Bayesian Modal Estimation
  • 7.5.2 Bayes EAP Estimation
  • 7.6 Role of the Prior Distributions: Shrinkage
  • 7.7 Research on Marginal Bayesian Parameter Estimation
  • 7.8 Summary
  • 8. The Graded Item Response
  • 8.1 Introduction
  • 8.2 Some Fundamentals of the Graded Response Case
  • 8.3 Parameter Estimation Procedures for the Graded Response Case
  • 8.3.1 Maximum Likelihood Estimation of the Item Parameters
  • 8.3.2 Ability Estimation in the Graded Response Case
  • 8.4 The Information Function for the Graded Response Case
  • 8.4.1 Normal ICC Model and Graded Response Information
  • 8.4.2 Logistic ICC Model and Graded Response Information
  • 8.5 Other Models for Polytomous Items
  • 8.6 Research on the Graded Response Model
  • 8.7 Summary
  • 9. Nominally Scored Items
  • 9.1 Introduction
  • 9.2 Maximum Likelihood Estimation of Item Parameters
  • 9.3 Maximum Likelihood Estimation of Ability
  • 9.4 The Information Functions
  • 9.5 Extensions of Bock’s Nominal Response Model
  • 9.6 The Relation of Nominally Scored Items and Logit-Linear Models
  • 9.6.1 Maximum Likelihood Estimation of Item Parameters Under a Logit-Linear Approach
  • 9.7 Summary
  • 10. Parameter Estimation for Multiple Group Data
  • 10.1 Introduction
  • 10.2 Estimating Properties of Distributions
  • 10.3 Estimation of a Latent Distribution
  • 10.4 The Multiple Group Model
  • 10.5 Parameter Estimation
  • 10.6 Summary
  • 11. Estimation of Item Parameters of Mixed Models
  • 11.1 Introduction
  • 11.2 A General Model
  • 11.3 Parameter Estimation via Marginal Maximum Likelihood
  • 11.3.1 Estimation of Item Parameters
  • 11.3.2 Estimation of Ability Parameters
  • 11.4 Research on Mixed Item Types
  • 11.5 Summary
  • 12. Parameter Estimation via Gibbs Sampler
  • 12.1 Introduction
  • 12.2 Albert’s Gibbs Sampler
  • 12.2.1 The Logic of Gibbs Sampler
  • 12.2.2 Albert’s Implementation of Gibbs Sampler
  • 12.2.3 Continuing the Markov Chain
  • 12.3 Gibbs Sampler: Another Approach
  • 12.3.1 Gibbs Sampler for Item Response Models
  • 12.3.2 Steps of Gibbs Sampler
  • 12.3.3 Model Specifications
  • 12.3.4 Starting Values
  • 12.3.5 Output Monitoring
  • 12.3.6 Summary Statistics
  • 12.4 Extensions of Gibbs Sampler within Item Response Theory
  • 12.5 Empirical Studies of Gibbs Sampler
  • 12.6 Summary
  • A. Implementation of Maximum Likelihood Estimation of Item Parameters
  • A.1 Introduction
  • A.2 Implementation
  • A.3 BASIC Computer Program
  • B. Implementation of Maximum Likelihood Estimation of Examinee’s Ability
  • B.1 Introduction
  • B.2 Implementation
  • B.3 BASIC Computer Program
  • C. Implementation of JMLE Procedure for the Rasch Model
  • C.1 Introduction
  • C.2 Implementation
  • C.3 BASIC Program
  • D. Implementation of Item Parameter Estimation via MMLE/EM
  • D.1 Introduction
  • D.2 Implementation
  • D.3 BASIC Computer Program
  • E. Implementing The Bayesian Approach
  • E.1 Introduction
  • E.2 Marginal Bayesian Modal Item Parameter Estimation
  • E.3 Implementation of Marginalized Bayesian Modal Item Parameter Estimation
  • E.4 Implementation of Bayesian Estimation of an Examinee’s Ability
  • E.4.1 Bayesian Modal Estimation
  • E.4.2 Bayesian “Expected A Posteriori” Estimation
  • E.5 BASIC Computer Programs
  • E.5.1 Program for Marginalized Bayesian Item Parameter Estimation
  • E.5.2 Program for Bayesian Modal Estimation of an Examinee’s Ability
  • E.5.3 Program for Bayesian Expected A Posteriori Estimation of an Examinee’s Ability
  • F. Implementation of Parameter Estimation Under the Graded Response Model
  • F.1 Introduction
  • F.2 Implementation of Item Parameter Estimation
  • F.3 Implementation of Ability Estimation
  • F.4 BASIC Computer Programs
  • F.4.1 Item Parameter Estimation
  • F.4.2 Ability Estimation
  • G. Implementation of MLE Under Nominal Response Scoring
  • G.1 Introduction
  • G.2 Implementation of Item Parameter Estimation
  • G.3 Implementation of Ability Estimation
  • G.3.1 Introduction
  • G.3.2 Implementation of Ability Estimation
  • G.4 BASIC Computer Programs
  • G.4.1 Item Parameter Estimation
  • G.4.2 Ability Estimation
  • H. Implementation of MMLE/EM for the Rasch Model
  • H.1 Introduction
  • H.2 Implementation
  • H.3 BASIC Computer Programs
  • H.3.1 Marginal Maximum Likelihood Estimation for the Rasch Model
  • H.3.2 Marginal Maximum Likelihood Estimation for the Rasch Model: Simpler Relaxation Solution
  • I. Implementation of Multiple Groups Estimation
  • I.1 Introduction
  • I.2 Estimation of Latent Distribution Parameters
  • I.3 Estimation of Both Item and Latent Distribution Parameters
  • I.4 BASIC Computer Programs
  • I.4.1 Estimation of Latent Distribution Parameters
  • I.4.2 Estimation of Both Item and Latent Distribution Parameters: The Compact Model
  • I.4.3 Estimation of Both Item and Latent Distribution Parameters: The Augmented Model
  • J. Implementation of Estimation for Mixed Models
  • J.1 Introduction
  • J.2 Implementation
  • J.3 BASIC Computer Program
  • K. Implementation of Gibbs Sampler
  • K.1 Introduction
  • K.2 Implementation
  • K.3 BASIC Computer Program
  • References
  • Index
Show More

Additional information

Veldu vöru

Rafbók til eignar

Aðrar vörur

1
    1
    Karfan þín
    Africa 2.0
    Africa 2.0
    Veldu vöru:

    Rafbók til eignar

    1 X 4.590 kr. = 4.590 kr.