Description
Efnisyfirlit
- Cover
- Half Title Page
- Title Page
- Copyright Page
- Dedication
- Contents
- Foreword
- Preface
- Acknowledgements
- Editors
- Author
- Chapter 1 Gujarat EarthquakeGround Deformation
- 1.1 Introduction
- 1.2 2001 Gujarat Earthquake: Ground Deformation Study
- 1.3 Primary Deformation Structures
- 1.3.1 Ground Fissures
- 1.3.2 Monoclinal Humps, Mole Tracks and Tent Structures
- 1.3.3 2001 Thrust Exposure in a Stream Bank (Faulted Quaternary Apron)
- 1.3.4 Displacement Estimates
- 1.3.5 Summary of Primary Surface Faulting
- 1.4 Secondary Deformation Structures
- 1.4.1 Off-Fault Co-Seismic Deformation
- 1.4.2 Secondary Deformation Structures by Seismic Shaking
- 1.4.3 Landslides: Lateral Spreads, Pressure Ridges and Sand Dykes at Budharmora
- 1.4.3.1 Trench 1
- 1.4.3.2 Trench 2
- 1.4.4 Sand Dykes and Their Chronology at Budharmora
- 1.4.5 Sand Blows in the Rann
- 1.4.6 Ground Fissures and Extensional Cracks
- 1.4.7 Ground Subsidence: Collapse of Ground
- 1.4.8 Soft Sediment Deformation
- 1.4.9 Sand Blow Craters
- 1.4.10 Rockfalls and Shattered Hills
- 1.4.11 Secondary Faults
- 1.4.11.1 Manfara Fault
- 1.4.11.1.1 Trenching at Manfara Fault
- 1.4.11.1.1.1 Trench 1
- 1.4.11.1.1.2 Trench 2
- 1.4.11.1.1.3 Trench 3: Fault Stratigraphy and Age Determinations
- 1.5 Conclusion
- Acknowledgements
- References
- Chapter 2 Gujarat EarthquakeLiquefaction
- 2.1 Introduction
- 2.2 Liquefaction
- 2.3 Kachchh Earthquakes and Liquefaction
- 2.4 Observed Liquefaction and Sand Blows Associated with the Bhuj Earthquake
- 2.4.1 Shallow Subsurface Study of Liquefaction in the Meizoseismal Area
- 2.4.1.1 Shallow Pits and Liquefaction
- 2.4.2 Liquefaction Studies Using GPR
- 2.4.3 Morphology of Large Liquefaction Craters at Umedpar
- 2.4.4 Trenching at Large Liquefaction Craters
- 2.4.4.1 Trench 1
- 2.4.4.2 Trench 2
- 2.4.4.3 Trench 3
- 2.5 Discussion
- 2.6 Conclusion
- Acknowledgements
- References
- Chapter 3 Earthquakes and Medical Complications
- 3.1 Introduction
- 3.2 Traumatic Injuries and Medical Complications in the First Week Post-Earthquake
- 3.2.1 Musculoskeletal Injuries
- 3.2.2 Renal Injuries
- 3.2.3 Neurological Injuries
- 3.2.4 Chest Injuries
- 3.3 Medical Complications
- 3.3.1 First Month Post-Earthquake
- 3.3.1.1 Cardiovascular System
- 3.3.1.2 Infectious Diseases
- 3.3.1.3 Recovery from Musculoskeletal Injuries
- 3.3.1.4 Recovery from Neurological Injuries
- 3.3.2 Medical Complications in the First Year Post-Earthquake
- 3.3.2.1 Mental Health
- 3.4 Management of Pre-Existing Diseases in the Post-Earthquake Period
- 3.4.1 Chronic Kidney Disease
- 3.4.2 Non-Infectious Respiratory Disease
- 3.5 Medical Complications for Earthquake Responders
- 3.6 Donated Medical Supplies
- 3.7 Conclusion
- References
- Chapter 4 Utilization of Satellite Geophysical Data as Precursors for Earthquake Monitoring
- 4.1 Introduction
- 4.2 Surface Temperature Anomalies Over Gujarat, India, and Their Possible Correlation with Earthquake Occurrences
- 4.2.1 Thermal Precursor
- 4.2.2 Surface Temperature Data from Thermal Infrared
- 4.2.3 Geology of the Study Area
- 4.2.3.1 Kachchh Region
- 4.2.4 Image Data Source
- 4.2.4.1 Earthquake Occurrences in Gujarat during January–April 2006
- 4.3 Methodology
- 4.3.1 Geometric Correction of NOAA AVHRR Data
- 4.3.2 Calibration of AVHRR Data
- 4.3.3 Retrieval of Brightness Temperature
- 4.3.4 Retrieval of Land Surface Temperature
- 4.3.5 Atmospheric Attenuation Correction for Retrieving Surface Temperature
- 4.4 Results
- 4.5 Discussions
- 4.6 Gravity Precursor Over Land
- 4.6.1 Data Sources and the Study Area of Interest
- 4.7 Methodology
- 4.7.1 Gravity Anomaly Modelling Using Geoid
- 4.8 Results and Discussion
- 4.9 Gravity Precursors Over Ocean
- 4.9.1 Data Sources and Study Area
- 4.9.2 Methodology
- 4.9.2.1 Crossover Analysis
- 4.9.2.2 Deeper Earth Effects in Geoid
- 4.9.3 Results and Discussion
- 4.9.3.1 Study of Oceanic Processes Over the Sumatran Earthquake Region
- 4.9.3.2 Study of Gravity Signatures
- 4.10 Study of Andaman Swarm Using Grace Geoid Anomalies
- 4.10.1 Results and Discussion
- 4.11 Overall Conclusion
- Acknowledgements
- References
- Chapter 5 Satellite Radar Imaging and Its Application to Natural Hazards
- 5.1 Introduction
- 5.2 What Does Radar Measure that is Useful for Natural Hazards?
- 5.3 Change in the Amplitude of the Radar Signal
- 5.4 Change in the Distance from Satellite to Ground: Interferometry
- 5.5 Along-Track Displacement and Subpixel Movements
- 5.6 Changes in Topography: Digital Elevation Models
- 5.7 Coherence Change
- 5.8 Practical Considerations: What Data Type Will Be of Most Utility?
- 5.8.1 Data Availability
- 5.8.2 Data Latency
- 5.9 Conclusion
- Acknowledgements
- References
- Chapter 6 DEMETER Satellite and Detection of Earthquake Signals
- 6.1 Introduction
- 6.2 DEMETER Mission
- 6.2.1 Scientific Payload
- 6.2.2 Constraints
- 6.2.2.1 EMC Constraints
- 6.2.2.2 Constraints on the Mission
- 6.2.3 Data Processing
- 6.2.4 Orbit
- 6.3 Examples of Particular Events
- 6.4 Statistical Analysis
- 6.4.1 Statistic with the Electric Field in the VLF Range
- 6.4.2 Statistic with the Electron Density
- 6.4.3 Statistic with the Ion Density
- 6.4.4 Discussions about the Statistics
- 6.5 Is It Possible to Predict EQs?
- 6.5.1 The Magnitude 8.8 Chile EQ
- 6.5.2 A Prediction Attempt
- 6.6 Conclusion
- Acknowledgements
- References
- Chapter 7 TIR Anomaly as Earthquake Precursor
- 7.1 Introduction
- 7.2 Origin of Thermal Anomalies
- 7.2.1 Gas and Vapours
- 7.2.2 Seismoelectromagnetic and Seismoelectric Effects
- 7.2.3 Extension of Thermal Anomalies
- 7.3 Advances in TIR Precursor Studies
- 7.3.1 Deviation–Time–Space–Thermal Criteria
- 7.3.2 Night Thermal Gradient
- 7.3.3 Spatial Features Linked to Thermal Anomalies
- 7.4 Conclusion
- References
- Chapter 8 Stress Change and Earthquake Triggering by ReservoirsRole of Fluids
- 8.1 Introduction
- 8.2 RTS: A Brief Historical Account
- 8.3 Factors Influencing RTS
- 8.3.1 Pre-Existing or In Situ Stress
- 8.3.2 Geological and Hydrological Conditions
- 8.3.3 Reservoirs
- 8.4 Mechanism of Reservoir-Triggered Earthquakes
- 8.4.1 Reservoir Water Load and Pore Pressure
- 8.4.2 Porous Elastic Solid and Theoretical Analyses
- 8.5 Concept of Coulomb Stress and Fault Stability in RTS
- 8.5.1 Magnitudes of Reservoir-Triggered Earthquakes and Triggering Threshold
- 8.6 Application of the Concept of the Porous Elastic Theory and Coulomb Stress in RTS: Detailed Case Histories
- 8.6.1 RTS due to Rihand Reservoir, Central India
- 8.6.2 RTS due to Aswan Reservoir, Egypt
- 8.6.3 RTS due to Koyna Reservoir, Western Peninsular India
- 8.6.4 Impoundment of Zipingpu Reservoir and 2008 Wenchuan Earthquake
- 8.6.5 Tarbela Reservoir
- 8.6.6 Açu Reservoir
- 8.7 Conclusion
- References
- Chapter 9 Earthquake Precursory Studies in India An Integrated Approach
- 9.1 Introduction
- 9.2 Tectonics and Seismic Tracks in the Indian Subcontinent
- 9.3 Earthquake Precursors
- 9.4 Progression Path of Earthquake Precursory Research in India
- 9.4.1 Early Leads
- 9.4.1.1 Seismological Precursors
- 9.4.1.1.1 Long-Term Precursors
- 9.4.1.1.2 Medium- and Short-Term Precursors
- 9.4.2 Geophysical and Geodetic Precursors
- 9.4.2.1 Geomagnetic and Geoelectric Precursors
- 9.4.2.2 Atmospheric and Ionospheric Precursors
- 9.4.2.3 Thermal Anomalies
- 9.4.3 Geochemical and Hydrological Precursors
- 9.5 Organized Approach to Precursory Studies
- 9.5.1 Multi-Parametric Geophysical Observatories: Establishment and Observations
- 9.5.1.1 Ghuttu Observatory in Northwest Himalaya
- 9.5.1.1.1 Kharsali Earthquake of 22 July 2007 (Mw 5.0)
- 9.5.1.1.2 Radon Anomalies
- 9.5.1.1.3 Gravity Field Variations
- 9.5.1.1.4 Seismomagnetic Signals
- 9.5.2 Multiparametric Geophysical Observations in the Koyna Region
- 9.6 Koyna Deep Borehole Investigations
- 9.6.1 Idea of Deep Borehole Drilling in Koyna
- 9.6.2 Preliminary Investigations and Results
- 9.6.3 Drilling of Pilot Borehole
- 9.7 Earthquake Early Warning in India
- 9.7.1 Principle and Importance of EEW System
- 9.7.1.1 Experimental EEW System in Northern India
- 9.8 Conclusion
- Acknowledgements
- References
- Chapter 10 Geomorphic Features Associated with Erosion
- 10.1 Introduction
- 10.2 Geomorphological Factors Affecting Erosion
- 10.2.1 Climate
- 10.2.2 Rock
- 10.2.3 Morphology
- 10.2.4 Land Use
- 10.3 Types of Erosion
- 10.3.1 Water Erosion
- 10.3.2 Raindrop Erosion
- 10.3.3 Sheet Erosion
- 10.3.4 Rill and Interrill Erosion
- 10.3.5 Ephemeral Stream Erosion
- 10.3.6 Permanent, Incised Gully Erosion
- 10.3.7 Riverbed Erosion
- 10.3.8 Bank Erosion
- 10.3.9 Erosion via Porosity
- 10.3.10 Erosion due to Snowmelting
- 10.3.11 Erosion due to Ice Crystal Development
- 10.3.12 Coastal Erosion
- 10.3.12.1 Erosion due to Wave Action
- 10.3.12.2 Erosion due to Currents
- 10.3.12.3 Erosion due to Midlittoral Organisms
- 10.3.12.4 Erosion due to Sea Level Rise
- 10.3.12.5 Erosion due to Human-Made Constructions
- 10.3.13 Wind Erosion
- 10.3.14 Human-Made Erosion (Incensement of the Erosion Rate)
- 10.3.15 Biological Erosion
- 10.3.15.1 Erosion due to Root System Development
- 10.3.15.2 Erosion due to Underground Living Organisms
- 10.4 Erosion Landforms
- 10.4.1 Water Erosion
- 10.4.1.1 Stream Valleys
- 10.4.1.2 Gorges
- 10.4.1.3 Waterfalls
- 10.4.1.4 Meanders
- 10.4.1.5 Knickpoints
- 10.4.1.6 Pot Holes
- 10.4.1.7 Peneplane
- 10.4.2 Coastal Erosion
- 10.4.2.1 Coastal Caves
- 10.4.2.2 Marmites
- 10.4.2.3 Coastal Platforms
- 10.4.2.4 Stacks
- 10.4.2.5 Notches
- 10.4.2.6 Sea Arches
- 10.4.3 Glacier Erosion
- 10.4.3.1 Glacial Striations
- 10.4.3.2 Proglacial Channels
- 10.4.3.3 Gelifluxion
- 10.4.3.4 Glacial Debris
- 10.4.3.5 Erratics
- 10.4.3.6 Glacial Gorges
- 10.4.3.7 Cirque
- 10.4.3.8 Arete
- 10.4.3.9 Horns
- 10.4.4 Wind Erosion
- 10.4.4.1 Aeolian Surface
- 10.4.4.2 Aeolian Sand
- 10.4.5 Karstic Erosion
- 10.4.5.1 Fossil Karst
- 10.4.5.2 Exhumation Karst
- 10.4.5.3 Uncovered Karst
- 10.4.5.4 Covered Karst
- 10.4.6 Exokarstic Forms
- 10.4.6.1 Dolines
- 10.4.6.2 Closed Dolines
- 10.4.6.3 Open Dolines
- 10.4.6.4 Suffusion Dolines
- 10.4.6.5 Uvala
- 10.4.6.6 Polje
- 10.4.6.7 Open Polje
- 10.4.6.8 Sinkholes
- 10.4.6.9 Estavelle
- 10.4.6.10 Hum
- 10.4.6.11 Karren, Sculpture
- 10.4.6.12 Kuppen
- 10.4.7 Endokarstic Forms
- 10.4.7.1 Caves
- 10.4.7.2 Karstic Springs
- 10.4.7.3 Submarine Karstic Springs
- 10.4.7.4 Spring Vauclusienne
- 10.4.7.5 Karstic Holes
- 10.5 Conclusion
- References
- Chapter 11 Thar DesertSource for Dust Storm
- 11.1 Introduction
- 11.2 Thar Desert
- 11.3 Field Measurement of Dust Storms
- 11.3.1 Dust Catcher
- 11.3.2 Wind Erosion Sampler
- 11.4 Procedure of Soil Loss Calculations
- 11.4.1 Field Observations on Soil Loss through Wind Erosion
- 11.5 Major Causative Factors
- 11.5.1 Surface Cover Factor
- 11.5.2 Weather Factor
- 11.5.3 Wind Velocity Profile
- 11.6 Potential Environmental Hazard of Eroded Soils
- 11.6.1 Particulate Matter in Eroded Soil
- 11.6.2 Nutrient Contents in Eroded Soil
- 11.7 Dust Aerosol Monitoring Through Remote Sensing
- 11.8 Control of Grazing and Reduction in Wind Erosion
- 11.9 Conclusion
- References
- Chapter 12 Coastal SubsidenceCauses, Mapping and Monitoring
- 12.1 Introduction
- 12.2 Causes
- 12.2.1 Natural Causes
- 12.2.2 Isostasy
- 12.2.3 Geostatic Load
- 12.2.4 Shallow Subsidence
- 12.2.5 Tectonic Subsidence
- 12.2.6 Accommodation
- 12.2.7 Anthropic Causes
- 12.2.8 Pumping Activities
- 12.2.9 Overloading
- 12.2.10 Hydraulic Reclaim
- 12.3 Subsidence Effects on Coastal Vegetation
- 12.4 Measurement Technologies: Mapping and Monitoring
- 12.4.1 Levelling
- 12.4.2 Global Navigation Satellite Systems
- 12.4.3 Extensometers
- 12.4.4 LIDAR
- 12.4.5 Photogrammetry by UAV
- 12.4.6 SAR-Based Techniques
- 12.4.7 Interferometric Point Target Analysis
- 12.4.8 Small-Baseline Subset
- 12.5 Example of Study Areas
- 12.5.1 Rhine–Meuse Delta
- 12.5.2 Southern Emilia Romagna
- 12.5.3 Impact on Vegetation Species Richness along the Adriatic Coast
- 12.5.4 Venice Area
- 12.5.5 Wetland Plant Diversity and Subsidence in the North Sea (The Netherlands)
- 12.6 Conclusion
- References
- Chapter 13 Subsidence Mapping Using InSAR
- 13.1 Introduction
- 13.2 InSAR and PSInSAR Methods
- 13.2.1 InSAR
- 13.2.2 Digital Elevation Model Generation
- 13.2.3 Master-to-Slave Registration
- 13.2.4 Resampling and Filtering
- 13.2.5 Interferogram Generation
- 13.2.6 Coherence Image Generation
- 13.2.7 Phase Unwrapping
- 13.2.8 Slant-to-Height Conversion
- 13.2.9 Geocoding
- 13.2.10 PSInSAR
- 13.2.11 Permanent Scatterer Candidates
- 13.3 Examples of Subsidence Mapping
- 13.3.1 Mapping in Ganges–Brahmaputra Delta
- 13.3.2 Mapping in Barcelona, Spain
- 13.3.3 Mapping of Tungurahua Volcano, Ecuador
- 13.4 Conclusion
- Acknowledgements
- References
- Chapter 14 Earthquakes and Associated Landslides in Pakistan
- 14.1 Introduction
- 14.2 Tectonic Setting
- 14.3 Pamir–Hindu Kush Seismotectonic Province
- 14.4 Karakoram–Himalaya Seismotectonic Province
- 14.4.1 Kashmir Himalayas–Indus–Kohistan Seismic Zone
- 14.4.1.1 The 1974 Pattan Earthquake
- 14.4.1.2 The 2005 Kashmir Earthquake
- 14.4.2 Nanga Parbat Seismic Zone
- 14.4.2.1 The 1840 Nanga Parbat Earthquake
- 14.4.2.2 The 2002 Nanga Parbat Earthquake
- 14.4.2.3 The 2010 Attabad Landslide
- 14.4.3 Darel–Hamran Kohistan Seismic Zone
- 14.5 Axial Belt Seismotectonic Province
- 14.6 Makran Seismotectonic Province
- 14.6.1 The 1945 Makran Earthquake
- 14.7 Conclusion
- Acknowledgements
- References
- Chapter 15 Landslides in JamaicaDistribution, Cause, Impact and Management
- 15.1 Introduction
- 15.2 Landslide Distribution at a National Scale
- 15.3 Landslides in Jamaica: History and Impact
- 15.4 Major Landslides and Slope Instability Events
- 15.4.1 Millbank Landslide and Slope Instability in the Rio Grande Valley
- 15.4.2 Jupiter Landslide
- 15.5 Causes of Landslides: Preparatory and Triggers
- 15.6 Preparatory Factors
- 15.6.1 Geology
- 15.6.2 Role of Pore Water Pressure within Geological Sequences
- 15.6.3 Role of Rock Weathering
- 15.6.4 Proximity to Faults
- 15.6.5 Land Use
- 15.7 Causes of Slope Instability Triggering
- 15.7.1 Rainfall Triggering
- 15.7.2 Rainfall Intensity and Duration
- 15.7.3 Triggering by Earthquakes
- 15.8 Response, Management Strategies and Critique
- 15.9 Conclusion
- References
- Chapter 16 LandslidesCauses, Mapping and Monitoring – Examples from Malaysia
- 16.1 Introduction
- 16.2 Landslides in Malaysia
- 16.3 Landslide Types
- 16.3.1 Triggering Factor Assessment
- 16.3.2 Monitoring
- 16.3.2.1 Remote Sensing-Based Monitoring
- 16.3.2.2 Field Monitoring
- 16.3.2.3 Landslide Inventory Mapping
- 16.4 Landslide Thematic Environmental Variables (Conditioning Factors)
- 16.5 General Classification
- 16.5.1 Qualitative Approaches
- 16.5.2 Quantitative Approaches
- 16.6 Landslide Susceptibility Modelling Approaches
- 16.6.1 Frequency Ratio
- 16.6.2 Evidential Belief Function
- 16.6.3 Index of Entropy
- 16.6.4 Artificial Neural Networks
- 16.6.5 Logistic Regression
- 16.6.6 Validation Process
- 16.7 Landslides in Malaysia: Selangor Case Study
- 16.7.1 Application of EBF Model in Landslide Susceptibility Mapping in Selangor
- 16.7.2 Spatial Database Used
- 16.7.3 Accuracy Assessment
- 16.8 Conclusion
- References
- Chapter 17 Mapping and Monitoring of Landslides Using LIDAR
- 17.1 Introduction
- 17.2 LIDAR and LASER Scanning Techniques
- 17.2.1 History
- 17.2.2 Instrument Principle
- 17.2.2.1 LIDAR Functioning
- 17.2.2.2 Multiple Echoes
- 17.2.2.3 Other Parameters: Intensity + Colour
- 17.2.2.4 ALS versus TLS
- 17.2.2.5 Spacing, Accuracy, Resolution and Data Types
- 17.2.2.6 Data Acquisition Issues: Occlusion and Biases
- 17.2.2.6.1 Occlusion
- 17.2.2.6.2 Biases
- 17.2.3 Data Treatment
- 17.2.3.1 Full-Waveform and Automatic Filtering
- 17.2.3.2 Non-Ground-Point Filtering (Including Vegetation Removal)
- 17.2.3.3 Co-Registration and Georeferencing
- 17.2.3.4 Point Cloud Comparison
- 17.3 Landslide Applications
- 17.3.1 Landslides
- 17.3.2 Rock Slopes
- 17.3.2.1 Structural Analysis
- 17.3.2.2 Monitoring of Fragmental Rockfalls
- 17.3.2.3 Rock Fall Susceptibility Assessment
- 17.3.3 Debris Flows
- 17.3.4 Input for Modelling
- 17.4 Conclusion
- Acknowledgements
- References
- Chapter 18 Radar Monitoring of Volcanic Activities
- 18.1 Introduction
- 18.2 Radar
- 18.3 Synthetic Aperture Radar
- 18.4 Interferometric Synthetic Aperture Radar
- 18.4.1 InSAR Processing Flow
- 18.5 Insar Products and their Applications to Volcanoes
- 18.5.1 SAR Intensity Image
- 18.5.2 InSAR Deformation Image and Source Parameters Derived from Modelling
- 18.5.3 InSAR Coherence Image
- 18.5.4 Digital Elevation Model
- 18.6 Multi-Interferogram InSAR
- 18.7 Conclusion
- Acknowledgements
- References
- Chapter 19 Active VolcanoesSatellite Remote Sensing
- 19.1 Introduction
- 19.2 Satellite Remote Sensing of Active Volcanoes
- 19.3 Thermal Activity
- 19.3.1 Principles of Hotspot Detection from Space
- 19.3.1.1 Hotspot Detection Algorithms
- 19.3.2 Time-Series Analyses of Volcanic Hotspots
- 19.3.3 Thermal Anomaly Characterization and Quantification
- 19.4 Eruption Plumes
- 19.4.1 Ash Cloud Detection and Tracking
- 19.4.2 Plume Height
- 19.4.3 Plume Gas Measurements
- 19.5 Volcano Topography and Deformation
- 19.5.1 Topography Measurement
- 19.5.2 Deformation Measurements
- 19.5.3 Deformation Time-Series Techniques
- 19.6 Conclusion
- References
- Chapter 20 Application of Thermal Remote Sensing to the Observation of Natural Hazards
- 20.1 Introduction
- 20.2 Fundamental Concepts
- 20.3 Satellite Imagery
- 20.4 Natural Hazard Applications
- 20.4.1 Volcanoes
- 20.4.2 Wildfires
- 20.4.3 Earthquakes
- 20.4.4 Landslides
- 20.4.5 Heat Waves
- 20.4.6 Flooding
- 20.4.7 Storms
- 20.5 Prospects for the Future
- 20.6 Conclusion
- References
- Index