Thematic Cartography and Geovisualization

Höfundur Terry A. Slocum; Robert B. McMaster; Fritz C. Kessler; Hugh H. Howard

Útgefandi Taylor & Francis

Snið ePub

Print ISBN 9781032766676

Útgáfa 4

Útgáfuár 2023

22.890 kr.

Description

Efnisyfirlit

  • Cover Page
  • Half-Title Page
  • Title Page
  • Copyright Page
  • Dedication
  • Contents
  • Preface
  • Acknowledgments
  • About the Authors
  • Chapter 1 Introduction
  • 1.1 Overview
  • 1.2 Learning Objectives
  • 1.3 What Is a Thematic Map?
  • 1.4 How Are Thematic Maps Used?
  • 1.5 Basic Steps for Communicating Map Information
  • 1.6 Technological Change in Cartography and Its Consequences
  • 1.7 What Is Geovisualization?
  • 1.8 Related GIScience Techniques
  • 1.9 Cognitive Issues in Cartography
  • 1.10 Social and Ethical Issues in Cartography
  • 1.11 Summary
  • 1.12 Study Questions
  • References
  • Part I Principles of Cartography
  • Chapter 2 A Historical Perspective on Thematic Cartography
  • 2.1 Introduction
  • 2.2 Learning Objectives
  • 2.3 A Brief History of Cartography
  • 2.4 History of Thematic Cartography
  • 2.4.1 The Rise of Social Cartography
  • 2.5 History of U.S. Academic Cartography
  • 2.5.1 Period 1: Early Beginnings
  • 2.5.1.1 John Paul Goode
  • 2.5.1.2 Erwin Raisz
  • 2.5.1.3 Guy-Harold Smith
  • 2.5.1.4 Richard Edes Harrison
  • 2.5.2 Period 2: The Post-War Era and the Building of Core Academic Programs
  • 2.5.2.1 University of Wisconsin
  • 2.5.2.2 University of Kansas
  • 2.5.2.3 University of Washington
  • 2.5.3 Period 3: Growth of Secondary Programs
  • 2.5.4 Period 4: Integration with GIScience
  • 2.6 European Thematic Cartography
  • 2.6.1 The Swiss School
  • 2.6.2 The British Experimental Cartographic Unit
  • 2.6.3 Bertin and French Thematic Cartography
  • 2.7 The Paradigms of American Cartography
  • 2.7.1 Analytical Cartography
  • 2.7.2 Maps and Society
  • 2.7.2.1 Privacy
  • 2.7.2.2 Power and Access
  • 2.7.2.3 Ethics
  • 2.7.2.4 Public Participation GIS/Mapping
  • 2.8 Summary
  • 2.9 Study Questions
  • References
  • Chapter 3 Statistical and Graphical Foundation
  • 3.1 Introduction
  • 3.2 Learning Objectives
  • 3.3 Population and Sample
  • 3.4 Descriptive versus Inferential Statistics
  • 3.5 Analyzing the Distribution of Individual Attributes
  • 3.5.1 Tables
  • 3.5.1.1 Raw Table
  • 3.5.1.2 Grouped-Frequency Table
  • 3.5.2 Graphs
  • 3.5.2.1 Point and Dispersion Graphs
  • 3.5.2.2 Histogram
  • 3.5.3 Numerical Summaries
  • 3.5.3.1 Measures of Central Tendency
  • 3.5.3.2 Measures of Dispersion
  • 3.6 Analyzing the Relationship between Two or More Attributes
  • 3.6.1 Tables
  • 3.6.2 Graphs
  • 3.6.3 Numerical Summaries
  • 3.6.3.1 Bivariate Correlation
  • 3.6.3.2 Bivariate Regression
  • 3.6.3.3 Reduced Major-Axis Approach
  • 3.6.3.4 Multiple Regression and Other Multivariate Techniques
  • 3.6.3.5 Considerations in Using Correlation-Regression
  • 3.7 Exploratory Data Analysis
  • 3.8 Numerical Summaries for Geographic Data
  • 3.8.1 Geographic Center
  • 3.8.2 Spatial Autocorrelation and Measuring Spatial Pattern
  • 3.8.3 Measuring Map Complexity
  • 3.9 Summary
  • 3.10 Study Questions
  • References
  • Chapter 4 Principles of Symbolization
  • 4.1 Introduction
  • 4.2 Learning Objectives
  • 4.3 Nature of Geographic Phenomena
  • 4.3.1 Spatial Dimension
  • 4.3.2 Models of Geographic Phenomena
  • 4.3.3 Phenomena versus Data
  • 4.4 Levels of Measurement
  • 4.5 Visual Variables
  • 4.5.1 Visual Variables for Quantitative Phenomena
  • 4.5.1.1 Spacing
  • 4.5.1.2 Size
  • 4.5.1.3 Perspective Height
  • 4.5.1.4 Hue, Lightness, and Saturation
  • 4.5.2 Visual Variables for Qualitative Phenomena
  • 4.5.2.1 Orientation and Shape
  • 4.5.2.2 Arrangement
  • 4.5.2.3 Hue
  • 4.5.3 Some Considerations in Working with Visual Variables
  • 4.6 Comparison of Four Common Thematic Mapping Techniques
  • 4.6.1 Choropleth Map
  • 4.6.2 Proportional Symbol Map
  • 4.6.3 Isopleth Map
  • 4.6.4 Dot Map
  • 4.6.5 Discussion
  • 4.7 Selecting Visual Variables for Choropleth Maps
  • 4.8 Using Senses Other than Vision to Interpret Spatial Patterns
  • 4.8.1 Sound
  • 4.8.2 Touch (or Haptics)
  • 4.8.3 Smell
  • 4.9 Summary
  • 4.10 Study Questions
  • References
  • Chapter 5 Data Classification
  • 5.1 Introduction
  • 5.2 Learning Objectives
  • 5.3 Data to Be Classified
  • 5.4 Equal Intervals Method
  • 5.5 Quantiles Method
  • 5.6 Mean-Standard Deviation Method
  • 5.7 Natural Breaks
  • 5.8 Optimal
  • 5.8.1 The Jenks–Caspall Algorithm
  • 5.8.2 The Fisher–Jenks Algorithm
  • 5.8.3 Advantages and Disadvantages of Optimal Classification
  • 5.9 Head/Tail Breaks: A Novel Classification Method
  • 5.10 Criteria for Selecting a Classification Method
  • 5.11 Considering the Spatial Distribution of the Data
  • 5.12 Summary
  • 5.13 Study Questions
  • References
  • Chapter 6 Scale and Generalization
  • 6.1 Introduction
  • 6.2 Learning Objectives
  • 6.3 Geographic and Cartographic Scale
  • 6.3.1 Multiple-Scale Databases
  • 6.4 Definitions of Generalization
  • 6.4.1 Definitions of Generalization in the Manual Domain
  • 6.4.2 Definitions of Generalization in the Digital Domain
  • 6.5 Models of Generalization
  • 6.5.1 Robinson et al.’s Model
  • 6.5.2 McMaster and Shea’s Model
  • 6.5.2.1 Why Generalization Is Needed: The Conceptual Objectives of Generalization
  • 6.5.2.2 When Generalization Is Required
  • 6.6 The Fundamental Operations of Generalization
  • 6.6.1 A Framework for the Fundamental Operations
  • 6.6.2 Vector-Based Operations
  • 6.6.2.1 Simplification
  • 6.6.2.2 Smoothing
  • 6.6.2.3 Aggregation
  • 6.6.2.4 Amalgamation
  • 6.6.2.5 Collapse
  • 6.6.2.6 Merging
  • 6.6.2.7 Refinement
  • 6.6.2.8 Exaggeration
  • 6.6.2.9 Enhancement
  • 6.6.2.10 Displacement
  • 6.6.3 The Simplification Process
  • 6.7 An Example of Generalization
  • 6.8 New Developments in Cartographic Generalization
  • 6.8.1 Measurement of Scale Change
  • 6.8.2 Fully Automated Generalization
  • 6.8.3 Data Models for Generalization
  • 6.8.4 New Forms of Cartographic Data
  • 6.9 Summary
  • 6.10 Study Questions
  • References
  • Chapter 7 The Earth and Its Coordinate System
  • 7.1 Introduction
  • 7.2 Learning Objectives
  • 7.3 Basic Characteristics of Earth’s Graticule
  • 7.3.1 Latitude
  • 7.3.2 Longitude
  • 7.3.3 Distance and Directions on Earth’s Spherical Surface
  • 7.4 Determining Earth’s Size and Shape
  • 7.4.1 Earth’s Size
  • 7.4.2 Earth’s Shape
  • 7.4.2.1 The Prolate versus Oblate Spheroid Controversy
  • 7.4.2.2 Reference Ellipsoid and the Graticule
  • 7.4.2.3 The Geoid
  • 7.4.2.4 Geodetic Datum
  • 7.4.2.5 Geodetic Datums and Thematic Cartography
  • 7.5 Summary
  • 7.6 Study Questions
  • References
  • Chapter 8 Elements of Map Projections
  • 8.1 Introduction
  • 8.2 Learning Objectives
  • 8.3 The Map Projection Concept
  • 8.4 The Reference Globe and Developable Surfaces
  • 8.5 The Mathematics of Map Projections
  • 8.6 Map Projection Characteristics
  • 8.6.1 Class
  • 8.6.2 Case
  • 8.6.3 Aspect
  • 8.7 Distortion on Map Projections
  • 8.7.1 A Visual Look at Distortion
  • 8.7.2 Scale Factor
  • 8.7.3 Tissot’s Indicatrix
  • 8.7.4 Distortion Patterns
  • 8.7.5 Using Geocart to Visualize Distortion Patterns
  • 8.8 Projection Properties
  • 8.8.1 Preserving Areas
  • 8.8.2 Preserving Angles
  • 8.8.3 Preserving Distances
  • 8.8.4 Preserving Directions
  • 8.8.5 Compromise Projections
  • 8.9 Summary
  • 8.10 Study Questions
  • References
  • Chapter 9 Selecting an Appropriate Map Projection
  • 9.1 Introduction
  • 9.2 Learning Objectives
  • 9.3 Potential Selection Guidelines
  • 9.3.1 Snyder’s Hierarchical Selection Guideline
  • 9.3.1.1 World Map Projections
  • 9.3.1.2 Map Projections for a Hemisphere
  • 9.3.1.3 Map Projections for a Continent, Ocean, or Smaller Region
  • 9.3.1.4 Map Projections for Special Properties
  • 9.4 Examples of Selecting Projections
  • 9.4.1 Mapping World Literacy Rates
  • 9.4.2 Mapping Russian Population Distribution
  • 9.4.3 Mapping Migration to the United States
  • 9.4.4 Mapping Tornado Paths across Kansas
  • 9.4.5 Mapping a Flight Path from Fairbanks, AK to Seoul, South Korea
  • 9.4.5.1 Mapping the Flight Path from Space
  • 9.4.5.2 Mapping the Flight Path’s Direction
  • 9.4.5.3 Mapping the Flight Path Distance
  • 9.4.5.4 Mapping the Great Circle Flight Path
  • 9.4.5.5 Mapping the Rhumb Line
  • 9.4.5.6 Mapping the Flight Path Using Google Maps
  • 9.4.6 Discussion
  • 9.5 Web-Based Interactive Map Projection Selection
  • 9.6 Summary
  • 9.7 Study Questions
  • References
  • Chapter 10 Principles of Color
  • 10.1 Introduction
  • 10.2 Learning Objectives
  • 10.3 How Color Is Processed by the Human Visual System
  • 10.3.1 Visible Light and the Electromagnetic Spectrum
  • 10.3.2 Structure of the Eye
  • 10.3.3 Theories of Color Perception
  • 10.3.4 Simultaneous Contrast
  • 10.3.5 Color Vision Impairment
  • 10.3.6 Beyond the Eye
  • 10.4 Models for Specifying Color
  • 10.4.1 The RGB Model
  • 10.4.2 The CMYK Model
  • 10.4.3 The HSV Model
  • 10.4.4 The Munsell Model
  • 10.4.5 The CIE Model
  • 10.4.6 Discussion
  • 10.5 Terminology and Principles in the Practical Use of Color
  • 10.5.1 Color Wheels
  • 10.5.2 Tints, Shades, and Tones
  • 10.5.3 Qualitative Color Conventions
  • 10.5.4 Quantitative Color Conventions
  • 10.5.5 Theme-Oriented Color Schemes
  • 10.6 Summary
  • 10.7 Study Questions
  • References
  • Chapter 11 Map Elements
  • 11.1 Introduction
  • 11.2 Learning Objectives
  • 11.3 Alignment and Centering
  • 11.4 Common Map Elements
  • 11.4.1 Frame Line and Neat Line
  • 11.4.2 Mapped Area
  • 11.4.3 Inset
  • 11.4.4 Title and Subtitle
  • 11.4.5 Legend
  • 11.4.6 Data Source
  • 11.4.7 Scale
  • 11.4.8 Orientation
  • 11.4.9 Relative Type Sizes for Certain Map Elements
  • 11.5 Summary
  • 11.6 Study Questions
  • References
  • Chapter 12 Typography
  • 12.1 Introduction
  • 12.2 Learning Objectives
  • 12.3 What Is Typography?
  • 12.3.1 Characteristics of Type
  • 12.4 General Typographic Guidelines
  • 12.5 Specific Typographic Guidelines
  • 12.5.1 All Features (Point, Linear, and Areal)
  • 12.5.2 Point Features
  • 12.5.3 Linear Features
  • 12.5.4 Areal Features
  • 12.6 Automated Type Placement
  • 12.7 Summary
  • 12.8 Study Questions
  • References
  • Chapter 13 Cartographic Design
  • 13.1 Introduction
  • 13.2 Learning Objectives
  • 13.3 Elements of Cartographic Design
  • 13.3.1 The Design Process
  • 13.3.2 Visual Hierarchy
  • 13.3.3 Contrast
  • 13.3.4 Figure-Ground
  • 13.3.5 Balance
  • 13.4 Case Study: Real Estate Site Suitability Map
  • 13.4.1 Steps 1–3 of the Map Communication Model
  • 13.4.2 Step 4 of the Map Communication Model: Design and Construct the Map
  • 13.4.3 Return to Procedure 4: Implementation of Map Elements and Typography
  • 13.4.3.1 Frame Line and Neat Line
  • 13.4.3.2 Mapped Area
  • 13.4.3.3 Inset
  • 13.4.3.4 Title and Subtitle
  • 13.4.3.5 Legend
  • 13.4.3.6 Data Source
  • 13.4.3.7 Scale
  • 13.4.3.8 Orientation
  • 13.4.4 Final Procedures
  • 13.5 Summary
  • 13.6 Study Questions
  • References
  • Chapter 14 Map Reproduction
  • 14.1 Introduction
  • 14.2 Learning Objectives
  • 14.3 Planning Ahead
  • 14.4 Map Editing
  • 14.5 Raster Image Processing for Print Reproduction
  • 14.5.1 Printing the Digital Map
  • 14.6 Screening for Print Reproduction
  • 14.6.1 Halftone and Stochastic Screening
  • 14.6.2 Halftone Screening Parameters
  • 14.6.3 Stochastic Screening Parameters
  • 14.7 Aspects of Color Printing
  • 14.7.1 Process Colors
  • 14.7.2 Spot Colors
  • 14.7.3 High-Fidelity Process Colors
  • 14.7.4 Color Management Systems
  • 14.8 High-Volume Print Reproduction
  • 14.8.1 The Prepress Phase
  • 14.8.2 File Formats for Prepress
  • 14.8.3 Proofing Methods
  • 14.8.4 Offset Lithographic Printing
  • 14.9 Summary
  • 14.10 Study Questions
  • References
  • Part II Mapping Techniques
  • Chapter 15 Choropleth Mapping
  • 15.1 Introduction
  • 15.2 Learning Objectives
  • 15.3 Selecting Appropriate Data
  • 15.4 Factors for Selecting a Color Scheme
  • 15.4.1 Kind of Data
  • 15.4.2 Color Naming
  • 15.4.3 Color Vision Impairment
  • 15.4.4 Simultaneous Contrast
  • 15.4.5 Map Use Tasks
  • 15.4.6 Color Associations
  • 15.4.7 Aesthetics
  • 15.4.8 Age of the Intended Audience
  • 15.4.9 Presentation vs. Data Exploration
  • 15.4.10 Economic Limitations and Client Requirements
  • 15.5 Systems for Specifying Color Schemes
  • 15.5.1 Approaches for Classed Maps
  • 15.5.1.1 Color Ramping and HSV Systems
  • 15.5.1.2 The Munsell Curve
  • 15.5.1.3 ColorBrewer
  • 15.5.2 Approaches for Unclassed Maps
  • 15.5.2.1 Applying the Munsell Curve
  • 15.5.2.2 Kovesi’s Approach
  • 15.6 Classed vs. Unclassed Mapping
  • 15.6.1 Maintaining Numerical Data Relations
  • 15.6.2 Presentation vs. Data Exploration
  • 15.6.3 Summarizing the Results of Experimental Studies
  • 15.6.3.1 Specific Information
  • 15.6.3.2 General Information
  • 15.6.3.3 Discussion
  • 15.7 Legend Design
  • 15.8 Illuminated Choropleth Mapping
  • 15.9 Summary
  • 15.10 Study Questions
  • References
  • Chapter 16 Dasymetric Mapping
  • 16.1 Introduction
  • 16.2 Learning Objectives
  • 16.3 Selecting Appropriate Data and Ancillary Information
  • 16.4 Some Basic Approaches for Dasymetric Mapping
  • 16.5 Eicher and Brewer’s Study
  • 16.6 Mennis and Hultgren’s Intelligent Dasymetric Mapping (IDM)
  • 16.7 Two Approaches for Producing Dasymetric Maps of Population Density
  • 16.7.1 Approach One: Using Land Cover and Limiting Ancillary Data Sets
  • 16.7.2 Approach Two: Use Zoning Polygons and Limiting Ancillary Data Sets
  • 16.7.3 Discussion
  • 16.8 Socscape: A Web App for Visualizing Racial Diversity
  • 16.9 Mapping the Global Population Distribution
  • 16.9.1 Gridded Population of the World
  • 16.9.2 LandScan
  • 16.9.3 Global Human Settlement Layer
  • 16.10 Summary
  • 16.11 Study Questions
  • References
  • Chapter 17 Isarithmic Mapping
  • 17.1 Introduction
  • 17.2 Learning Objectives
  • 17.3 Selecting Appropriate Data
  • 17.4 Manual Interpolation
  • 17.5 Automated Interpolation for True Point Data
  • 17.5.1 Triangulation
  • 17.5.2 Inverse-Distance Weighting
  • 17.5.3 Ordinary Kriging
  • 17.5.3.1 Semivariance and the Semivariogram
  • 17.5.3.2 Kriging Computations
  • 17.5.4 Thin-Plate Splines
  • 17.5.5 Choosing among the Interpolation Methods
  • 17.6 Tobler’s Pycnophylactic Interpolation
  • 17.7 Symbolization
  • 17.7.1 Some Basic Symbolization Approaches
  • 17.7.2 Color Stereoscopic Effect
  • 17.8 Summary
  • 17.9 Study Questions
  • References
  • Chapter 18 Proportional Symbol Mapping
  • 18.1 Introduction
  • 18.2 Learning Objectives
  • 18.3 Selecting Appropriate Data
  • 18.4 Kinds of Proportional Symbols
  • 18.5 Scaling Proportional Symbols
  • 18.5.1 Mathematical Scaling
  • 18.5.2 Perceptual Scaling
  • 18.5.2.1 Formulas for Perceptual Scaling
  • 18.5.2.2 Problems in Applying the Formulas
  • 18.5.3 Range-Graded Scaling
  • 18.6 Legend Design
  • 18.6.1 Arranging Symbols
  • 18.6.2 Which Symbols to Include
  • 18.7 Handling Overlap of Symbols
  • 18.7.1 How Much Overlap?
  • 18.7.2 Symbolizing Overlap
  • 18.8 Necklace Maps
  • 18.9 Summary
  • 18.10 Study Questions
  • References
  • Chapter 19 Dot Mapping
  • 19.1 Introduction
  • 19.2 Learning Objectives
  • 19.3 Key Issues Involved in Dot Mapping
  • 19.3.1 Determining Regions within Which Dots Should Be Placed
  • 19.3.2 Selecting Dot Size and Unit Value
  • 19.3.3 Placing Dots within Regions
  • 19.3.3.1 Placing Dots Manually
  • 19.3.3.2 Placing Dots Digitally
  • 19.3.4 Designing a Legend
  • 19.4 Graduated Dot Mapping
  • 19.5 Interactive Dot Mapping on the Web
  • 19.6 Summary
  • 19.7 Study Questions
  • References
  • Chapter 20 Cartograms
  • 20.1 Introduction
  • 20.2 Learning Objectives
  • 20.3 Methods that Attempt to Preserve the Shape of Enumeration Units
  • 20.3.1 Noncontiguous Cartograms
  • 20.3.2 Contiguous Cartograms
  • 20.3.2.1 Gridded Cartograms
  • 20.3.3 Mosaic Cartograms
  • 20.4 Methods that Do Not Preserve the Shape of Enumeration Units
  • 20.4.1 Rectangular Cartograms
  • 20.4.1.1 Rectilinear Cartograms
  • 20.4.2 Dorling Cartograms
  • 20.4.3 Demers Cartograms
  • 20.5 Contrasting Various Cartogram Methods
  • 20.5.1 Contrasting Cartogram Methods in Terms of Aspects of Accuracy
  • 20.5.2 A User Study of Major Cartogram Methods
  • 20.6 Alternatives to Conventional Cartograms
  • 20.6.1 Combined Choropleth/Proportional Symbol Maps
  • 20.6.2 Value-by-Alpha Maps
  • 20.6.3 Balanced Cartograms
  • 20.7 Summary
  • 20.8 Study Questions
  • References
  • Chapter 21 Flow Mapping
  • 21.1 Introduction
  • 21.2 Learning Objectives
  • 21.3 Basic Types of Flow Maps and Associated Data for Flow Mapping
  • 21.4 Issues in Designing Flow Maps
  • 21.5 Flow Mapping Prior to Automation
  • 21.6 Early Digital Flow Mapping Efforts by Waldo Tobler
  • 21.7 Examples of Recent Digital Flow Mapping
  • 21.7.1 Stephen and Jenny’s Interactive Web-Based Origin-Destination Flow Map
  • 21.7.2 Koylu et al.’s Web-Based Software for Designing Origin-Destination Flow Maps
  • 21.7.2.1 Koylu and Guo’s User Study
  • 21.7.2.2 Koylu et al.’s FlowMapper Software
  • 21.7.3 Flow Mapping in Virtual Environments
  • 21.8 Geovisual Analytics and Flow Mapping
  • 21.9 Summary
  • 21.10 Study Questions
  • References
  • Chapter 22 Multivariate Mapping
  • 22.1 Introduction
  • 22.2 Learning Objectives
  • 22.3 Bivariate Mapping
  • 22.3.1 Comparing Maps
  • 22.3.1.1 Comparing Choropleth Maps
  • 22.3.1.2 Comparing Miscellaneous Thematic Maps
  • 22.3.1.3 Comparing Maps for Two Points in Time
  • 22.3.2 Combining Two Attributes on the Same Map
  • 22.3.2.1 Bivariate Choropleth Maps
  • 22.3.2.2 Additional Bivariate Mapping Techniques
  • 22.4 Multivariate Mapping Involving Three or More Attributes
  • 22.4.1 Comparing Maps
  • 22.4.2 Combining Attributes on the Same Map
  • 22.4.2.1 Trivariate Choropleth Maps
  • 22.4.2.2 Multivariate Dot Maps
  • 22.4.2.3 Multivariate Point Symbol Maps
  • 22.4.2.4 Acquiring Specific and General Information from Multivariate Maps
  • 22.4.2.5 Ring Maps: An Alternative to Conventional Symbolization Approaches
  • 22.5 Cluster Analysis
  • 22.5.1 Basic Steps in Hierarchical Cluster Analysis
  • 22.5.2 Adding a Contiguity Constraint to a Hierarchical Cluster Analysis
  • 22.6 Summary
  • 22.7 Study Questions
  • References
  • Part III Geovisualization
  • Chapter 23 Visualizing Terrain
  • 23.1 Introduction
  • 23.2 Learning Objectives
  • 23.3 Nature of the Data
  • 23.4 Vertical Views
  • 23.4.1 Hachures
  • 23.4.2 Contour-Based Methods
  • 23.4.2.1 Eynard and Jenny’s Work
  • 23.4.3 Raisz’s Physiographic Method
  • 23.4.4 Shaded Relief
  • 23.4.5 Morphometric Techniques
  • 23.4.5.1 Symbolizing Aspect and Slope: Brewer and Marlow’s Approach
  • 23.4.5.2 Symbolizing Other Morphometric Parameters
  • 23.5 Oblique Views
  • 23.5.1 Block Diagrams
  • 23.5.2 Panoramas and Related Oblique Views
  • 23.5.3 Plan Oblique Relief
  • 23.6 Physical Models
  • 23.7 Issues in Creating Shaded Relief
  • 23.7.1 Generalizing the Terrain
  • 23.7.2 Selecting an Azimuth and Sun Elevation for Illumination
  • 23.7.3 Other Lighting Model Issues
  • 23.7.4 Representation of Swiss-Style Rock Drawing
  • 23.7.5 Color Considerations
  • 23.8 Summary
  • 23.9 Study Questions
  • References
  • Chapter 24 Map Animation
  • 24.1 Introduction
  • 24.2 Learning Objectives
  • 24.3 Early Developments
  • 24.4 Visual Variables for Animation
  • 24.5 Examples of Temporal Animations
  • 24.5.1 Animating Movement and Flows
  • 24.5.2 Animating Choropleth Maps
  • 24.5.2.1 Some Basic Examples of Choropleth Animation
  • 24.5.2.2 Should We Generalize Choropleth Animations?
  • 24.5.2.3 Should We Utilize Classed or Unclassed Maps?
  • 24.5.3 Animating Proportional Symbol Maps
  • 24.5.4 Animating Isarithmic Maps
  • 24.5.5 Other Temporal Animations
  • 24.6 Examples of Nontemporal Animations
  • 24.6.1 Peterson’s Early Work
  • 24.6.2 Gershon’s Early Work
  • 24.6.3 Fly-Overs
  • 24.6.4 Viégas and Wattenberg’s Wind Map
  • 24.7 Enhancing the Interactivity in Animations
  • 24.7.1 Harrower’s Work
  • 24.7.2 CoronaViz
  • 24.8 Does Animation Work?
  • 24.9 Guidelines for Designing Your Own Animations
  • 24.10 Using 3-D Space to Display Temporal Data
  • 24.11 Summary
  • 24.12 Study Questions
  • References
  • Chapter 25 Data Exploration
  • 25.1 Introduction
  • 25.2 Learning Objectives
  • 25.3 Goals of Data Exploration
  • 25.4 Methods of Data Exploration
  • 25.4.1 Manipulating Data
  • 25.4.2 Varying the Symbolization
  • 25.4.3 Manipulating the User’s Viewpoint
  • 25.4.4 Multiple Map Views
  • 25.4.5 Linking Maps with Other Forms of Display
  • 25.4.6 Highlighting Portions of a Data Set
  • 25.4.7 Probing the Display
  • 25.4.8 Toggling Individual Themes On and Off
  • 25.4.9 Animation
  • 25.4.10 Access to Miscellaneous Resources
  • 25.4.11 How Symbols Are Assigned to Attributes
  • 25.4.12 Automatic Map Interpretation
  • 25.5 Examples of Data Exploration
  • 25.5.1 Moellering’s 3-D Mapping Software
  • 25.5.2 ExploreMap and Map Sequencing
  • 25.5.3 Project Argus
  • 25.5.4 MapTime
  • 25.5.5 CommonGIS
  • 25.5.6 GeoDa
  • 25.5.7 Micromaps
  • 25.5.7.1 Linked Micromaps Plot
  • 25.5.7.2 Conditioned Micromaps
  • 25.5.8 ViewExposed
  • 25.5.9 Using Tableau to Create Interactive Data Visualizations
  • 25.6 Summary
  • 25.7 Study Questions
  • References
  • Chapter 26 Geovisual Analytics
  • 26.1 Introduction
  • 26.2 Learning Objectives
  • 26.3 Characteristics and Limitations of Big Data
  • 26.4 What Is Geovisual Analytics?
  • 26.5 The Self-Organizing Map (SOM)
  • 26.6 Examples of Geovisual Analytics
  • 26.6.1 TaxiVis: A System for Visualizing Taxi Trips in NYC
  • 26.6.2 Mosaic Diagrams: A Technique for Visualizing Spatiotemporal Data
  • 26.6.3 CarSenToGram: An Approach for Visualizing Twitter Data
  • 26.6.4 Crowd Lens: A Tool for Visualizing OpenStreetMap Contributions
  • 26.6.5 Use of a SOM for Sense-of-Place Analysis
  • 26.7 Summary
  • 26.8 Study Questions
  • References
  • Chapter 27 Visualizing Uncertainty
  • 27.1 Introduction
  • 27.2 Learning Objectives
  • 27.3 Basic Elements of Uncertainty
  • 27.4 General Methods for Depicting Uncertainty
  • 27.5 Visual Variables for Depicting Uncertainty
  • 27.5.1 Some Examples of Intrinsic Visual Variables
  • 27.5.2 Some Examples of Extrinsic Visual Variables
  • 27.6 Applications of Visualizing Uncertainty
  • 27.6.1 Handling the Uncertainty in Choropleth Maps
  • 27.6.1.1 Using Confidence Levels (CLs) to Create Class Breaks
  • 27.6.1.2 Using Maximum Likelihood Estimation to Create Class Breaks
  • 27.6.1.3 Using the SAAR Software to Visualize Uncertainty
  • 27.6.2 Visualizing Climate Change Uncertainty
  • 27.6.3 Visualizing Uncertainty in Decision-Making
  • 27.6.3.1 Visualizing the Uncertainty of Water Balance Models
  • 27.6.3.2 Visualizing the Uncertainty of Forecasted Hurricane Paths
  • 27.6.4 Examples of Interactivity and Animation
  • 27.7 Using Sound to Represent Data Uncertainty
  • 27.8 Summary
  • 27.9 Study Questions
  • References
  • Chapter 28 Virtual Environments and Augmented Reality
  • 28.1 Introduction
  • 28.2 Learning Objectives
  • 28.3 Defining VEs and AR
  • 28.4 Technologies for Creating VEs
  • 28.4.1 Personalized Displays
  • 28.4.2 Wall-Size Displays
  • 28.4.3 Head-Mounted Displays
  • 28.4.4 Room-Format and Drafting-Table Format Displays
  • 28.5 The Four “I” Factors of VEs
  • 28.5.1 Immersion
  • 28.5.2 Interactivity
  • 28.5.3 Information Intensity
  • 28.5.4 Intelligence of Objects
  • 28.6 Some Key Questions Regarding VEs
  • 28.6.1 Are Specialized Symbols Necessary for Thematic Maps Created in VEs?
  • 28.6.2 Are Stereoscopic Maps More Effective than Non-Stereoscopic Maps?
  • 28.6.3 What Are Some Examples of VEs That Make Use of Caves and Wall-Size Displays?
  • 28.6.3.1 Using a CAVE to Create Soils Maps
  • 28.6.3.2 Using a Wall-Size Display to Obtain Public Input on Climate Change Scenarios
  • 28.6.3.3 HMDs as a Potential Cost-Effective Solution for Collaborative Efforts
  • 28.6.4 What Progress Has Been Made Toward Developing a Digital Earth?
  • 28.7 Some Recent Examples of the Utilization of AR
  • 28.7.1 The Augmented Reality Sandbox
  • 28.7.2 Using AR to Enhance an Understanding of Topographic Maps
  • 28.7.3 Developing Novel Methods for Interacting with AR Environments
  • 28.7.4 Holograms
  • 28.8 Health, Safety, and Social Issues
  • 28.9 Summary
  • 28.10 Study Questions
  • References
  • Glossary
  • Index
Show More

Additional information

Veldu vöru

Rafbók til eignar

Reviews

There are no reviews yet.

Be the first to review “Thematic Cartography and Geovisualization”

Netfang þitt verður ekki birt. Nauðsynlegir reitir eru merktir *

Aðrar vörur

1
    1
    Karfan þín
    Archaeology: The Basics
    Archaeology: The Basics
    Veldu vöru:

    Rafbók til eignar

    1 X 3.190 kr. = 3.190 kr.