Description
Efnisyfirlit
- Cover Page
- Half-Title Page
- Title Page
- Copyright Page
- Dedication
- Contents
- Preface
- Acknowledgments
- About the Authors
- Chapter 1 Introduction
- 1.1 Overview
- 1.2 Learning Objectives
- 1.3 What Is a Thematic Map?
- 1.4 How Are Thematic Maps Used?
- 1.5 Basic Steps for Communicating Map Information
- 1.6 Technological Change in Cartography and Its Consequences
- 1.7 What Is Geovisualization?
- 1.8 Related GIScience Techniques
- 1.9 Cognitive Issues in Cartography
- 1.10 Social and Ethical Issues in Cartography
- 1.11 Summary
- 1.12 Study Questions
- References
- Part I Principles of Cartography
- Chapter 2 A Historical Perspective on Thematic Cartography
- 2.1 Introduction
- 2.2 Learning Objectives
- 2.3 A Brief History of Cartography
- 2.4 History of Thematic Cartography
- 2.4.1 The Rise of Social Cartography
- 2.5 History of U.S. Academic Cartography
- 2.5.1 Period 1: Early Beginnings
- 2.5.1.1 John Paul Goode
- 2.5.1.2 Erwin Raisz
- 2.5.1.3 Guy-Harold Smith
- 2.5.1.4 Richard Edes Harrison
- 2.5.2 Period 2: The Post-War Era and the Building of Core Academic Programs
- 2.5.2.1 University of Wisconsin
- 2.5.2.2 University of Kansas
- 2.5.2.3 University of Washington
- 2.5.3 Period 3: Growth of Secondary Programs
- 2.5.4 Period 4: Integration with GIScience
- 2.6 European Thematic Cartography
- 2.6.1 The Swiss School
- 2.6.2 The British Experimental Cartographic Unit
- 2.6.3 Bertin and French Thematic Cartography
- 2.7 The Paradigms of American Cartography
- 2.7.1 Analytical Cartography
- 2.7.2 Maps and Society
- 2.7.2.1 Privacy
- 2.7.2.2 Power and Access
- 2.7.2.3 Ethics
- 2.7.2.4 Public Participation GIS/Mapping
- 2.8 Summary
- 2.9 Study Questions
- References
- Chapter 3 Statistical and Graphical Foundation
- 3.1 Introduction
- 3.2 Learning Objectives
- 3.3 Population and Sample
- 3.4 Descriptive versus Inferential Statistics
- 3.5 Analyzing the Distribution of Individual Attributes
- 3.5.1 Tables
- 3.5.1.1 Raw Table
- 3.5.1.2 Grouped-Frequency Table
- 3.5.2 Graphs
- 3.5.2.1 Point and Dispersion Graphs
- 3.5.2.2 Histogram
- 3.5.3 Numerical Summaries
- 3.5.3.1 Measures of Central Tendency
- 3.5.3.2 Measures of Dispersion
- 3.6 Analyzing the Relationship between Two or More Attributes
- 3.6.1 Tables
- 3.6.2 Graphs
- 3.6.3 Numerical Summaries
- 3.6.3.1 Bivariate Correlation
- 3.6.3.2 Bivariate Regression
- 3.6.3.3 Reduced Major-Axis Approach
- 3.6.3.4 Multiple Regression and Other Multivariate Techniques
- 3.6.3.5 Considerations in Using Correlation-Regression
- 3.7 Exploratory Data Analysis
- 3.8 Numerical Summaries for Geographic Data
- 3.8.1 Geographic Center
- 3.8.2 Spatial Autocorrelation and Measuring Spatial Pattern
- 3.8.3 Measuring Map Complexity
- 3.9 Summary
- 3.10 Study Questions
- References
- Chapter 4 Principles of Symbolization
- 4.1 Introduction
- 4.2 Learning Objectives
- 4.3 Nature of Geographic Phenomena
- 4.3.1 Spatial Dimension
- 4.3.2 Models of Geographic Phenomena
- 4.3.3 Phenomena versus Data
- 4.4 Levels of Measurement
- 4.5 Visual Variables
- 4.5.1 Visual Variables for Quantitative Phenomena
- 4.5.1.1 Spacing
- 4.5.1.2 Size
- 4.5.1.3 Perspective Height
- 4.5.1.4 Hue, Lightness, and Saturation
- 4.5.2 Visual Variables for Qualitative Phenomena
- 4.5.2.1 Orientation and Shape
- 4.5.2.2 Arrangement
- 4.5.2.3 Hue
- 4.5.3 Some Considerations in Working with Visual Variables
- 4.6 Comparison of Four Common Thematic Mapping Techniques
- 4.6.1 Choropleth Map
- 4.6.2 Proportional Symbol Map
- 4.6.3 Isopleth Map
- 4.6.4 Dot Map
- 4.6.5 Discussion
- 4.7 Selecting Visual Variables for Choropleth Maps
- 4.8 Using Senses Other than Vision to Interpret Spatial Patterns
- 4.8.1 Sound
- 4.8.2 Touch (or Haptics)
- 4.8.3 Smell
- 4.9 Summary
- 4.10 Study Questions
- References
- Chapter 5 Data Classification
- 5.1 Introduction
- 5.2 Learning Objectives
- 5.3 Data to Be Classified
- 5.4 Equal Intervals Method
- 5.5 Quantiles Method
- 5.6 Mean-Standard Deviation Method
- 5.7 Natural Breaks
- 5.8 Optimal
- 5.8.1 The Jenks–Caspall Algorithm
- 5.8.2 The Fisher–Jenks Algorithm
- 5.8.3 Advantages and Disadvantages of Optimal Classification
- 5.9 Head/Tail Breaks: A Novel Classification Method
- 5.10 Criteria for Selecting a Classification Method
- 5.11 Considering the Spatial Distribution of the Data
- 5.12 Summary
- 5.13 Study Questions
- References
- Chapter 6 Scale and Generalization
- 6.1 Introduction
- 6.2 Learning Objectives
- 6.3 Geographic and Cartographic Scale
- 6.3.1 Multiple-Scale Databases
- 6.4 Definitions of Generalization
- 6.4.1 Definitions of Generalization in the Manual Domain
- 6.4.2 Definitions of Generalization in the Digital Domain
- 6.5 Models of Generalization
- 6.5.1 Robinson et al.’s Model
- 6.5.2 McMaster and Shea’s Model
- 6.5.2.1 Why Generalization Is Needed: The Conceptual Objectives of Generalization
- 6.5.2.2 When Generalization Is Required
- 6.6 The Fundamental Operations of Generalization
- 6.6.1 A Framework for the Fundamental Operations
- 6.6.2 Vector-Based Operations
- 6.6.2.1 Simplification
- 6.6.2.2 Smoothing
- 6.6.2.3 Aggregation
- 6.6.2.4 Amalgamation
- 6.6.2.5 Collapse
- 6.6.2.6 Merging
- 6.6.2.7 Refinement
- 6.6.2.8 Exaggeration
- 6.6.2.9 Enhancement
- 6.6.2.10 Displacement
- 6.6.3 The Simplification Process
- 6.7 An Example of Generalization
- 6.8 New Developments in Cartographic Generalization
- 6.8.1 Measurement of Scale Change
- 6.8.2 Fully Automated Generalization
- 6.8.3 Data Models for Generalization
- 6.8.4 New Forms of Cartographic Data
- 6.9 Summary
- 6.10 Study Questions
- References
- Chapter 7 The Earth and Its Coordinate System
- 7.1 Introduction
- 7.2 Learning Objectives
- 7.3 Basic Characteristics of Earth’s Graticule
- 7.3.1 Latitude
- 7.3.2 Longitude
- 7.3.3 Distance and Directions on Earth’s Spherical Surface
- 7.4 Determining Earth’s Size and Shape
- 7.4.1 Earth’s Size
- 7.4.2 Earth’s Shape
- 7.4.2.1 The Prolate versus Oblate Spheroid Controversy
- 7.4.2.2 Reference Ellipsoid and the Graticule
- 7.4.2.3 The Geoid
- 7.4.2.4 Geodetic Datum
- 7.4.2.5 Geodetic Datums and Thematic Cartography
- 7.5 Summary
- 7.6 Study Questions
- References
- Chapter 8 Elements of Map Projections
- 8.1 Introduction
- 8.2 Learning Objectives
- 8.3 The Map Projection Concept
- 8.4 The Reference Globe and Developable Surfaces
- 8.5 The Mathematics of Map Projections
- 8.6 Map Projection Characteristics
- 8.6.1 Class
- 8.6.2 Case
- 8.6.3 Aspect
- 8.7 Distortion on Map Projections
- 8.7.1 A Visual Look at Distortion
- 8.7.2 Scale Factor
- 8.7.3 Tissot’s Indicatrix
- 8.7.4 Distortion Patterns
- 8.7.5 Using Geocart to Visualize Distortion Patterns
- 8.8 Projection Properties
- 8.8.1 Preserving Areas
- 8.8.2 Preserving Angles
- 8.8.3 Preserving Distances
- 8.8.4 Preserving Directions
- 8.8.5 Compromise Projections
- 8.9 Summary
- 8.10 Study Questions
- References
- Chapter 9 Selecting an Appropriate Map Projection
- 9.1 Introduction
- 9.2 Learning Objectives
- 9.3 Potential Selection Guidelines
- 9.3.1 Snyder’s Hierarchical Selection Guideline
- 9.3.1.1 World Map Projections
- 9.3.1.2 Map Projections for a Hemisphere
- 9.3.1.3 Map Projections for a Continent, Ocean, or Smaller Region
- 9.3.1.4 Map Projections for Special Properties
- 9.4 Examples of Selecting Projections
- 9.4.1 Mapping World Literacy Rates
- 9.4.2 Mapping Russian Population Distribution
- 9.4.3 Mapping Migration to the United States
- 9.4.4 Mapping Tornado Paths across Kansas
- 9.4.5 Mapping a Flight Path from Fairbanks, AK to Seoul, South Korea
- 9.4.5.1 Mapping the Flight Path from Space
- 9.4.5.2 Mapping the Flight Path’s Direction
- 9.4.5.3 Mapping the Flight Path Distance
- 9.4.5.4 Mapping the Great Circle Flight Path
- 9.4.5.5 Mapping the Rhumb Line
- 9.4.5.6 Mapping the Flight Path Using Google Maps
- 9.4.6 Discussion
- 9.5 Web-Based Interactive Map Projection Selection
- 9.6 Summary
- 9.7 Study Questions
- References
- Chapter 10 Principles of Color
- 10.1 Introduction
- 10.2 Learning Objectives
- 10.3 How Color Is Processed by the Human Visual System
- 10.3.1 Visible Light and the Electromagnetic Spectrum
- 10.3.2 Structure of the Eye
- 10.3.3 Theories of Color Perception
- 10.3.4 Simultaneous Contrast
- 10.3.5 Color Vision Impairment
- 10.3.6 Beyond the Eye
- 10.4 Models for Specifying Color
- 10.4.1 The RGB Model
- 10.4.2 The CMYK Model
- 10.4.3 The HSV Model
- 10.4.4 The Munsell Model
- 10.4.5 The CIE Model
- 10.4.6 Discussion
- 10.5 Terminology and Principles in the Practical Use of Color
- 10.5.1 Color Wheels
- 10.5.2 Tints, Shades, and Tones
- 10.5.3 Qualitative Color Conventions
- 10.5.4 Quantitative Color Conventions
- 10.5.5 Theme-Oriented Color Schemes
- 10.6 Summary
- 10.7 Study Questions
- References
- Chapter 11 Map Elements
- 11.1 Introduction
- 11.2 Learning Objectives
- 11.3 Alignment and Centering
- 11.4 Common Map Elements
- 11.4.1 Frame Line and Neat Line
- 11.4.2 Mapped Area
- 11.4.3 Inset
- 11.4.4 Title and Subtitle
- 11.4.5 Legend
- 11.4.6 Data Source
- 11.4.7 Scale
- 11.4.8 Orientation
- 11.4.9 Relative Type Sizes for Certain Map Elements
- 11.5 Summary
- 11.6 Study Questions
- References
- Chapter 12 Typography
- 12.1 Introduction
- 12.2 Learning Objectives
- 12.3 What Is Typography?
- 12.3.1 Characteristics of Type
- 12.4 General Typographic Guidelines
- 12.5 Specific Typographic Guidelines
- 12.5.1 All Features (Point, Linear, and Areal)
- 12.5.2 Point Features
- 12.5.3 Linear Features
- 12.5.4 Areal Features
- 12.6 Automated Type Placement
- 12.7 Summary
- 12.8 Study Questions
- References
- Chapter 13 Cartographic Design
- 13.1 Introduction
- 13.2 Learning Objectives
- 13.3 Elements of Cartographic Design
- 13.3.1 The Design Process
- 13.3.2 Visual Hierarchy
- 13.3.3 Contrast
- 13.3.4 Figure-Ground
- 13.3.5 Balance
- 13.4 Case Study: Real Estate Site Suitability Map
- 13.4.1 Steps 1–3 of the Map Communication Model
- 13.4.2 Step 4 of the Map Communication Model: Design and Construct the Map
- 13.4.3 Return to Procedure 4: Implementation of Map Elements and Typography
- 13.4.3.1 Frame Line and Neat Line
- 13.4.3.2 Mapped Area
- 13.4.3.3 Inset
- 13.4.3.4 Title and Subtitle
- 13.4.3.5 Legend
- 13.4.3.6 Data Source
- 13.4.3.7 Scale
- 13.4.3.8 Orientation
- 13.4.4 Final Procedures
- 13.5 Summary
- 13.6 Study Questions
- References
- Chapter 14 Map Reproduction
- 14.1 Introduction
- 14.2 Learning Objectives
- 14.3 Planning Ahead
- 14.4 Map Editing
- 14.5 Raster Image Processing for Print Reproduction
- 14.5.1 Printing the Digital Map
- 14.6 Screening for Print Reproduction
- 14.6.1 Halftone and Stochastic Screening
- 14.6.2 Halftone Screening Parameters
- 14.6.3 Stochastic Screening Parameters
- 14.7 Aspects of Color Printing
- 14.7.1 Process Colors
- 14.7.2 Spot Colors
- 14.7.3 High-Fidelity Process Colors
- 14.7.4 Color Management Systems
- 14.8 High-Volume Print Reproduction
- 14.8.1 The Prepress Phase
- 14.8.2 File Formats for Prepress
- 14.8.3 Proofing Methods
- 14.8.4 Offset Lithographic Printing
- 14.9 Summary
- 14.10 Study Questions
- References
- Part II Mapping Techniques
- Chapter 15 Choropleth Mapping
- 15.1 Introduction
- 15.2 Learning Objectives
- 15.3 Selecting Appropriate Data
- 15.4 Factors for Selecting a Color Scheme
- 15.4.1 Kind of Data
- 15.4.2 Color Naming
- 15.4.3 Color Vision Impairment
- 15.4.4 Simultaneous Contrast
- 15.4.5 Map Use Tasks
- 15.4.6 Color Associations
- 15.4.7 Aesthetics
- 15.4.8 Age of the Intended Audience
- 15.4.9 Presentation vs. Data Exploration
- 15.4.10 Economic Limitations and Client Requirements
- 15.5 Systems for Specifying Color Schemes
- 15.5.1 Approaches for Classed Maps
- 15.5.1.1 Color Ramping and HSV Systems
- 15.5.1.2 The Munsell Curve
- 15.5.1.3 ColorBrewer
- 15.5.2 Approaches for Unclassed Maps
- 15.5.2.1 Applying the Munsell Curve
- 15.5.2.2 Kovesi’s Approach
- 15.6 Classed vs. Unclassed Mapping
- 15.6.1 Maintaining Numerical Data Relations
- 15.6.2 Presentation vs. Data Exploration
- 15.6.3 Summarizing the Results of Experimental Studies
- 15.6.3.1 Specific Information
- 15.6.3.2 General Information
- 15.6.3.3 Discussion
- 15.7 Legend Design
- 15.8 Illuminated Choropleth Mapping
- 15.9 Summary
- 15.10 Study Questions
- References
- Chapter 16 Dasymetric Mapping
- 16.1 Introduction
- 16.2 Learning Objectives
- 16.3 Selecting Appropriate Data and Ancillary Information
- 16.4 Some Basic Approaches for Dasymetric Mapping
- 16.5 Eicher and Brewer’s Study
- 16.6 Mennis and Hultgren’s Intelligent Dasymetric Mapping (IDM)
- 16.7 Two Approaches for Producing Dasymetric Maps of Population Density
- 16.7.1 Approach One: Using Land Cover and Limiting Ancillary Data Sets
- 16.7.2 Approach Two: Use Zoning Polygons and Limiting Ancillary Data Sets
- 16.7.3 Discussion
- 16.8 Socscape: A Web App for Visualizing Racial Diversity
- 16.9 Mapping the Global Population Distribution
- 16.9.1 Gridded Population of the World
- 16.9.2 LandScan
- 16.9.3 Global Human Settlement Layer
- 16.10 Summary
- 16.11 Study Questions
- References
- Chapter 17 Isarithmic Mapping
- 17.1 Introduction
- 17.2 Learning Objectives
- 17.3 Selecting Appropriate Data
- 17.4 Manual Interpolation
- 17.5 Automated Interpolation for True Point Data
- 17.5.1 Triangulation
- 17.5.2 Inverse-Distance Weighting
- 17.5.3 Ordinary Kriging
- 17.5.3.1 Semivariance and the Semivariogram
- 17.5.3.2 Kriging Computations
- 17.5.4 Thin-Plate Splines
- 17.5.5 Choosing among the Interpolation Methods
- 17.6 Tobler’s Pycnophylactic Interpolation
- 17.7 Symbolization
- 17.7.1 Some Basic Symbolization Approaches
- 17.7.2 Color Stereoscopic Effect
- 17.8 Summary
- 17.9 Study Questions
- References
- Chapter 18 Proportional Symbol Mapping
- 18.1 Introduction
- 18.2 Learning Objectives
- 18.3 Selecting Appropriate Data
- 18.4 Kinds of Proportional Symbols
- 18.5 Scaling Proportional Symbols
- 18.5.1 Mathematical Scaling
- 18.5.2 Perceptual Scaling
- 18.5.2.1 Formulas for Perceptual Scaling
- 18.5.2.2 Problems in Applying the Formulas
- 18.5.3 Range-Graded Scaling
- 18.6 Legend Design
- 18.6.1 Arranging Symbols
- 18.6.2 Which Symbols to Include
- 18.7 Handling Overlap of Symbols
- 18.7.1 How Much Overlap?
- 18.7.2 Symbolizing Overlap
- 18.8 Necklace Maps
- 18.9 Summary
- 18.10 Study Questions
- References
- Chapter 19 Dot Mapping
- 19.1 Introduction
- 19.2 Learning Objectives
- 19.3 Key Issues Involved in Dot Mapping
- 19.3.1 Determining Regions within Which Dots Should Be Placed
- 19.3.2 Selecting Dot Size and Unit Value
- 19.3.3 Placing Dots within Regions
- 19.3.3.1 Placing Dots Manually
- 19.3.3.2 Placing Dots Digitally
- 19.3.4 Designing a Legend
- 19.4 Graduated Dot Mapping
- 19.5 Interactive Dot Mapping on the Web
- 19.6 Summary
- 19.7 Study Questions
- References
- Chapter 20 Cartograms
- 20.1 Introduction
- 20.2 Learning Objectives
- 20.3 Methods that Attempt to Preserve the Shape of Enumeration Units
- 20.3.1 Noncontiguous Cartograms
- 20.3.2 Contiguous Cartograms
- 20.3.2.1 Gridded Cartograms
- 20.3.3 Mosaic Cartograms
- 20.4 Methods that Do Not Preserve the Shape of Enumeration Units
- 20.4.1 Rectangular Cartograms
- 20.4.1.1 Rectilinear Cartograms
- 20.4.2 Dorling Cartograms
- 20.4.3 Demers Cartograms
- 20.5 Contrasting Various Cartogram Methods
- 20.5.1 Contrasting Cartogram Methods in Terms of Aspects of Accuracy
- 20.5.2 A User Study of Major Cartogram Methods
- 20.6 Alternatives to Conventional Cartograms
- 20.6.1 Combined Choropleth/Proportional Symbol Maps
- 20.6.2 Value-by-Alpha Maps
- 20.6.3 Balanced Cartograms
- 20.7 Summary
- 20.8 Study Questions
- References
- Chapter 21 Flow Mapping
- 21.1 Introduction
- 21.2 Learning Objectives
- 21.3 Basic Types of Flow Maps and Associated Data for Flow Mapping
- 21.4 Issues in Designing Flow Maps
- 21.5 Flow Mapping Prior to Automation
- 21.6 Early Digital Flow Mapping Efforts by Waldo Tobler
- 21.7 Examples of Recent Digital Flow Mapping
- 21.7.1 Stephen and Jenny’s Interactive Web-Based Origin-Destination Flow Map
- 21.7.2 Koylu et al.’s Web-Based Software for Designing Origin-Destination Flow Maps
- 21.7.2.1 Koylu and Guo’s User Study
- 21.7.2.2 Koylu et al.’s FlowMapper Software
- 21.7.3 Flow Mapping in Virtual Environments
- 21.8 Geovisual Analytics and Flow Mapping
- 21.9 Summary
- 21.10 Study Questions
- References
- Chapter 22 Multivariate Mapping
- 22.1 Introduction
- 22.2 Learning Objectives
- 22.3 Bivariate Mapping
- 22.3.1 Comparing Maps
- 22.3.1.1 Comparing Choropleth Maps
- 22.3.1.2 Comparing Miscellaneous Thematic Maps
- 22.3.1.3 Comparing Maps for Two Points in Time
- 22.3.2 Combining Two Attributes on the Same Map
- 22.3.2.1 Bivariate Choropleth Maps
- 22.3.2.2 Additional Bivariate Mapping Techniques
- 22.4 Multivariate Mapping Involving Three or More Attributes
- 22.4.1 Comparing Maps
- 22.4.2 Combining Attributes on the Same Map
- 22.4.2.1 Trivariate Choropleth Maps
- 22.4.2.2 Multivariate Dot Maps
- 22.4.2.3 Multivariate Point Symbol Maps
- 22.4.2.4 Acquiring Specific and General Information from Multivariate Maps
- 22.4.2.5 Ring Maps: An Alternative to Conventional Symbolization Approaches
- 22.5 Cluster Analysis
- 22.5.1 Basic Steps in Hierarchical Cluster Analysis
- 22.5.2 Adding a Contiguity Constraint to a Hierarchical Cluster Analysis
- 22.6 Summary
- 22.7 Study Questions
- References
- Part III Geovisualization
- Chapter 23 Visualizing Terrain
- 23.1 Introduction
- 23.2 Learning Objectives
- 23.3 Nature of the Data
- 23.4 Vertical Views
- 23.4.1 Hachures
- 23.4.2 Contour-Based Methods
- 23.4.2.1 Eynard and Jenny’s Work
- 23.4.3 Raisz’s Physiographic Method
- 23.4.4 Shaded Relief
- 23.4.5 Morphometric Techniques
- 23.4.5.1 Symbolizing Aspect and Slope: Brewer and Marlow’s Approach
- 23.4.5.2 Symbolizing Other Morphometric Parameters
- 23.5 Oblique Views
- 23.5.1 Block Diagrams
- 23.5.2 Panoramas and Related Oblique Views
- 23.5.3 Plan Oblique Relief
- 23.6 Physical Models
- 23.7 Issues in Creating Shaded Relief
- 23.7.1 Generalizing the Terrain
- 23.7.2 Selecting an Azimuth and Sun Elevation for Illumination
- 23.7.3 Other Lighting Model Issues
- 23.7.4 Representation of Swiss-Style Rock Drawing
- 23.7.5 Color Considerations
- 23.8 Summary
- 23.9 Study Questions
- References
- Chapter 24 Map Animation
- 24.1 Introduction
- 24.2 Learning Objectives
- 24.3 Early Developments
- 24.4 Visual Variables for Animation
- 24.5 Examples of Temporal Animations
- 24.5.1 Animating Movement and Flows
- 24.5.2 Animating Choropleth Maps
- 24.5.2.1 Some Basic Examples of Choropleth Animation
- 24.5.2.2 Should We Generalize Choropleth Animations?
- 24.5.2.3 Should We Utilize Classed or Unclassed Maps?
- 24.5.3 Animating Proportional Symbol Maps
- 24.5.4 Animating Isarithmic Maps
- 24.5.5 Other Temporal Animations
- 24.6 Examples of Nontemporal Animations
- 24.6.1 Peterson’s Early Work
- 24.6.2 Gershon’s Early Work
- 24.6.3 Fly-Overs
- 24.6.4 Viégas and Wattenberg’s Wind Map
- 24.7 Enhancing the Interactivity in Animations
- 24.7.1 Harrower’s Work
- 24.7.2 CoronaViz
- 24.8 Does Animation Work?
- 24.9 Guidelines for Designing Your Own Animations
- 24.10 Using 3-D Space to Display Temporal Data
- 24.11 Summary
- 24.12 Study Questions
- References
- Chapter 25 Data Exploration
- 25.1 Introduction
- 25.2 Learning Objectives
- 25.3 Goals of Data Exploration
- 25.4 Methods of Data Exploration
- 25.4.1 Manipulating Data
- 25.4.2 Varying the Symbolization
- 25.4.3 Manipulating the User’s Viewpoint
- 25.4.4 Multiple Map Views
- 25.4.5 Linking Maps with Other Forms of Display
- 25.4.6 Highlighting Portions of a Data Set
- 25.4.7 Probing the Display
- 25.4.8 Toggling Individual Themes On and Off
- 25.4.9 Animation
- 25.4.10 Access to Miscellaneous Resources
- 25.4.11 How Symbols Are Assigned to Attributes
- 25.4.12 Automatic Map Interpretation
- 25.5 Examples of Data Exploration
- 25.5.1 Moellering’s 3-D Mapping Software
- 25.5.2 ExploreMap and Map Sequencing
- 25.5.3 Project Argus
- 25.5.4 MapTime
- 25.5.5 CommonGIS
- 25.5.6 GeoDa
- 25.5.7 Micromaps
- 25.5.7.1 Linked Micromaps Plot
- 25.5.7.2 Conditioned Micromaps
- 25.5.8 ViewExposed
- 25.5.9 Using Tableau to Create Interactive Data Visualizations
- 25.6 Summary
- 25.7 Study Questions
- References
- Chapter 26 Geovisual Analytics
- 26.1 Introduction
- 26.2 Learning Objectives
- 26.3 Characteristics and Limitations of Big Data
- 26.4 What Is Geovisual Analytics?
- 26.5 The Self-Organizing Map (SOM)
- 26.6 Examples of Geovisual Analytics
- 26.6.1 TaxiVis: A System for Visualizing Taxi Trips in NYC
- 26.6.2 Mosaic Diagrams: A Technique for Visualizing Spatiotemporal Data
- 26.6.3 CarSenToGram: An Approach for Visualizing Twitter Data
- 26.6.4 Crowd Lens: A Tool for Visualizing OpenStreetMap Contributions
- 26.6.5 Use of a SOM for Sense-of-Place Analysis
- 26.7 Summary
- 26.8 Study Questions
- References
- Chapter 27 Visualizing Uncertainty
- 27.1 Introduction
- 27.2 Learning Objectives
- 27.3 Basic Elements of Uncertainty
- 27.4 General Methods for Depicting Uncertainty
- 27.5 Visual Variables for Depicting Uncertainty
- 27.5.1 Some Examples of Intrinsic Visual Variables
- 27.5.2 Some Examples of Extrinsic Visual Variables
- 27.6 Applications of Visualizing Uncertainty
- 27.6.1 Handling the Uncertainty in Choropleth Maps
- 27.6.1.1 Using Confidence Levels (CLs) to Create Class Breaks
- 27.6.1.2 Using Maximum Likelihood Estimation to Create Class Breaks
- 27.6.1.3 Using the SAAR Software to Visualize Uncertainty
- 27.6.2 Visualizing Climate Change Uncertainty
- 27.6.3 Visualizing Uncertainty in Decision-Making
- 27.6.3.1 Visualizing the Uncertainty of Water Balance Models
- 27.6.3.2 Visualizing the Uncertainty of Forecasted Hurricane Paths
- 27.6.4 Examples of Interactivity and Animation
- 27.7 Using Sound to Represent Data Uncertainty
- 27.8 Summary
- 27.9 Study Questions
- References
- Chapter 28 Virtual Environments and Augmented Reality
- 28.1 Introduction
- 28.2 Learning Objectives
- 28.3 Defining VEs and AR
- 28.4 Technologies for Creating VEs
- 28.4.1 Personalized Displays
- 28.4.2 Wall-Size Displays
- 28.4.3 Head-Mounted Displays
- 28.4.4 Room-Format and Drafting-Table Format Displays
- 28.5 The Four “I” Factors of VEs
- 28.5.1 Immersion
- 28.5.2 Interactivity
- 28.5.3 Information Intensity
- 28.5.4 Intelligence of Objects
- 28.6 Some Key Questions Regarding VEs
- 28.6.1 Are Specialized Symbols Necessary for Thematic Maps Created in VEs?
- 28.6.2 Are Stereoscopic Maps More Effective than Non-Stereoscopic Maps?
- 28.6.3 What Are Some Examples of VEs That Make Use of Caves and Wall-Size Displays?
- 28.6.3.1 Using a CAVE to Create Soils Maps
- 28.6.3.2 Using a Wall-Size Display to Obtain Public Input on Climate Change Scenarios
- 28.6.3.3 HMDs as a Potential Cost-Effective Solution for Collaborative Efforts
- 28.6.4 What Progress Has Been Made Toward Developing a Digital Earth?
- 28.7 Some Recent Examples of the Utilization of AR
- 28.7.1 The Augmented Reality Sandbox
- 28.7.2 Using AR to Enhance an Understanding of Topographic Maps
- 28.7.3 Developing Novel Methods for Interacting with AR Environments
- 28.7.4 Holograms
- 28.8 Health, Safety, and Social Issues
- 28.9 Summary
- 28.10 Study Questions
- References
- Glossary
- Index
Reviews
There are no reviews yet.