Mixed Reality and Gamification for Cultural Heritage

Höfundur Author

Útgefandi Springer Nature

Snið Page Fidelity

Print ISBN 9783319496061

Útgáfa 0

Útgáfuár 2017

3.290 kr.

Description

Efnisyfirlit

  • Preface
  • Contents
  • List of Contributors
  • Part I: Introduction
  • Chapter 1: Digital Heritage and Virtual Archaeology: An Approach Through the Framework of Internatio
  • 1.1 International Recommendations in Cultural Heritage
  • 1.1.1 The First Steps
  • 1.1.2 ICOMOS´s Major International Charters
  • 1.1.3 The UNESCO Conventions
  • 1.1.4 Other International Documents
  • 1.2 London Charter
  • 1.2.1 The Scope of the London Charter
  • 1.2.2 The Charter Principles
  • 1.2.2.1 Principle 1: Implementation
  • 1.2.2.2 Principle 2: Aims and Methods
  • 1.2.2.3 Principle 3: Research Sources
  • 1.2.2.4 Principle 4: Documentation
  • 1.2.2.5 Principle 5: Sustainability
  • 1.2.2.6 Principle 6: Access
  • 1.3 The Seville Principles
  • 1.3.1 Principle 1: Interdisciplinarity
  • 1.3.2 Principle 2: Purpose
  • 1.3.3 Principle 3: Complementarity
  • 1.3.4 Principle 4: Authenticity
  • 1.3.5 Principle 5: Historical Rigour
  • 1.3.6 Principle 6: Efficiency
  • 1.3.7 Principle 7: Scientific Transparency
  • 1.3.8 Principle 8: Training and Evaluation
  • 1.4 Conclusion
  • References
  • Part II: Digitization and Visualization
  • Chapter 2: Data Acquisition for the Geometric Documentation of Cultural Heritage
  • 2.1 Geometric Documentation
  • 2.1.1 Necessity
  • 2.1.2 Definition
  • 2.1.3 Geometric Documentation Products (2D-3D)
  • 2.1.4 Documentation Methods
  • 2.2 Specifications and Standards
  • 2.3 Passive Data Acquisition Methods
  • 2.3.1 Geodetic Data Acquisition
  • 2.3.2 Image-Based Data Acquisition
  • 2.3.2.1 Digital Cameras and Their Operation
  • 2.3.2.2 Characteristics
  • 2.3.3 The Digital Image
  • 2.3.4 Good Practice for Digital Imaging
  • 2.3.5 Platforms for Data Acquisition
  • 2.4 Active Data Acquisition Methods
  • 2.4.1 Scanners
  • 2.4.1.1 Terrestrial Laser Scanners
  • 2.4.1.2 Structured Light Scanners
  • 2.4.1.3 Range Cameras
  • 2.5 Geometric Documentation Examples
  • 2.5.1 The Geometric Documentation of Byzantine Churches in Cyprus
  • 2.5.2 The Geometric Documentation of Ancient Vessels
  • References
  • Chapter 3: Autonomous Mapping of the Priscilla Catacombs
  • 3.1 Introduction
  • 3.1.1 Background
  • 3.1.2 Application Scenario: Exploration of the Catacombs of Rome
  • 3.2 State of the Art in 3D Reconstruction
  • 3.3 Recording Constraints/Hardware Setup
  • 3.4 SfM-Based 3D Reconstruction
  • 3.4.1 Initial Structure from Motion
  • 3.4.1.1 Feature Detection
  • 3.4.1.2 Initial Feature Matching and Bundling for the Camera Arc
  • 3.4.2 Large-Scale Bundling
  • 3.4.2.1 Generalized Camera Model
  • 3.4.2.2 Initial Camera Calibration
  • 3.4.2.3 Degeneracies
  • 3.4.2.4 Overall Strategy
  • 3.4.2.5 Mesh Generation
  • 3.5 Texturing
  • 3.5.1 Texturing by BRDF Clustering and Inference
  • 3.5.2 Large-Scale Texturing
  • 3.6 Conclusion
  • References
  • Chapter 4: Acceleration of 3D Mass Digitization Processes: Recent Advances and Challenges
  • 4.1 Introduction
  • 4.2 A First Approach to 3D Mass Digitization
  • 4.2.1 Automated Photogrammetry
  • 4.2.1.1 CultLab3D Platform
  • 4.2.1.2 CultArc3D
  • 4.2.1.3 CultArm3D
  • 4.2.1.4 Reconstruction
  • 4.2.2 Automated Structured Light
  • 4.2.3 Color Calibration
  • 4.2.4 Optical Material Capture
  • 4.3 3D-Centered Annotation and Visualization
  • 4.4 Summary and Outlook
  • References
  • Chapter 5: Intangible Cultural Heritage and New Technologies: Challenges and Opportunities for Cultu
  • 5.1 Introduction
  • 5.2 Previous Work
  • 5.3 Modern Technologies in the Transmission and Documentation of Intangible Heritage
  • 5.3.1 Facial Expression Analysis and Modelling
  • 5.3.2 Vocal Tract Sensing and Modelling
  • 5.3.3 Body Motion and Gesture Recognition
  • 5.3.3.1 Motion Capture Technologies for Dance Applications
  • 5.3.3.2 Hand and Finger Motion Recognition
  • 5.3.3.3 Intangible Heritage Preservation and Transmission
  • 5.3.4 Encephalography Analysis and Emotion Recognition
  • 5.3.5 Semantic Multimedia Analysis
  • 5.3.6 3D Visualisation of Intangible Heritage
  • 5.3.7 Text-to-Song Synthesis
  • 5.4 Discussion and Future Challenges
  • References
  • Part III: Content Use and Re-use
  • Chapter 6: 3D Digital Libraries and Their Contribution in the Documentation of the Past
  • 6.1 Digital Libraries
  • 6.1.1 History
  • 6.1.2 Evolution
  • 6.1.3 From 2D GIS and 3D Models to BIM and HBIM
  • 6.2 Digital Libraries and Cultural Heritage: The State of Play
  • 6.2.1 International Best Practices
  • 6.2.2 Intersectoral Understanding: Overcoming Language Obstacles
  • 6.3 Digital Library Content: Current Possibilities, Challenges, Risks, and Limitations
  • 6.3.1 Past and Current Developments
  • 6.3.2 Visualization of 3D Content and the Challenges of Virtual, Augmented, and Mixed Reality
  • 6.3.3 Standards for 3D Web Retrieval and Discovery
  • 6.4 Metadata and Interoperability
  • 6.5 Semantics, Ontologies, and Linked Data
  • 6.6 User Needs and Interfaces
  • 6.7 Reuse, Copyright, and Licensing
  • 6.7.1 The Open Data Agenda
  • 6.7.2 Creative Commons Licenses
  • 6.8 Aggregation, Standards, and Archiving
  • 6.8.1 The Cloud
  • 6.8.2 Existing Online Repositories
  • 6.9 Digital Preservation
  • 6.10 Crowdsourcing and User Contribution
  • 6.11 The Future
  • References
  • Chapter 7: Enriching and Publishing Cultural Heritage as Linked Open Data
  • 7.1 Introduction
  • 7.2 Background
  • 7.2.1 RDF and Linked Open Data
  • 7.2.2 Semantic Enrichment
  • 7.3 Overall Architecture
  • 7.4 Semantic Interoperability Using MINT
  • 7.4.1 The MINT Platform
  • 7.4.2 Mapping Editor
  • 7.5 The Europeana Fashion Use Case
  • 7.5.1 The Europeana Fashion Profile
  • 7.5.2 Fashion Thesaurus
  • 7.5.3 Thesaurus-Based Enrichment
  • 7.5.4 DBpedia-Based Enrichment
  • 7.6 Results
  • 7.7 Conclusion
  • References
  • Chapter 8: Digital Memory and Integrated Data Capturing: Innovations for an Inclusive Cultural Herit
  • 8.1 Introduction
  • 8.2 Digital Memory and Integrated Data Capturing
  • 8.2.1 INCEPTION Objectives and Strategies
  • 8.2.2 Integrated 3D Laser Scanner Survey for Cultural Heritage
  • 8.2.3 Cultural Heritage Through Time and Space Dimension
  • 8.3 Semantic Enrichment and Inclusive Approach
  • 8.3.1 3D Semantic Models to Manage the Time Dimension
  • 8.3.2 Advancement in 3D Data Capturing: Towards an Enriched Semantic Modelling
  • 8.4 Future Developments and Innovations: VR and AR in Heritage Applications
  • 8.5 Conclusion
  • References
  • Part IV: Geospatial
  • Chapter 9: Five-Dimensional (5D) Modelling of the Holy Aedicule of the Church of the Holy Sepulchre
  • 9.1 Introduction
  • 9.2 Interdisciplinary Approach: Study Overview
  • 9.3 Architectural Form and Structure of the Holy Aedicule
  • 9.4 Analysis of the Construction Phases
  • 9.5 Geometric Documentation
  • 9.5.1 Data Acquisition
  • 9.5.2 Data Processing and Results
  • 9.5.3 Inserting GPR in 3D
  • 9.5.4 Visualizations from the 3D Model
  • 9.6 Materials Characterization
  • 9.6.1 Sampling
  • 9.6.2 Nondestructive Testing
  • 9.6.3 Laboratory Techniques: Petrographic and Mineralogical Characterization
  • 9.7 Five-Dimensional (5D) Modelling of the Historic Construction Phases
  • References
  • Chapter 10: Historic BIM for Mobile VR/AR Applications
  • 10.1 BIM for Cultural Heritage Documentation and Preservation
  • 10.2 Conversion of a Survey into Parametric Geometry: Beyond Direct Modeling
  • 10.3 The Importance of the “I´´ in HBIM
  • 10.4 HBIM in Mobile Devices Through Augmented and Virtual Reality
  • 10.4.1 HBIM in Mobile Apps for Specialists
  • 10.4.2 Panoramic Virtual Tour from HBIM
  • 10.4.3 HBIM and Augmented Reality
  • 10.5 Conclusion
  • References
  • Chapter 11: Data Collection for Estimation of Resilience of Cultural Heritage Assets
  • 11.1 Introduction
  • 11.2 Significances of Built Heritage
  • 11.2.1 Background of the Definition of Cultural Heritage Significances
  • 11.2.2 Definition of Cultural Heritage Significances
  • 11.2.3 Cultural Heritage Services
  • 11.3 Built Heritage Database Systems
  • 11.3.1 Overview of Current Systems
  • 11.3.2 European Cultural Heritage Identity Card
  • 11.3.3 Environmental Impact on Historic Structures
  • 11.3.4 Influence of Improper Decisions
  • 11.4 Resilience Model for Built Heritage
  • 11.4.1 Resilience Model of Contemporary Buildings
  • 11.4.2 Proposal of Resilience Model for Built Heritage
  • 11.5 Conclusions
  • References
  • Chapter 12: Virtual Reconstruction of Historical Architecture as Media for Knowledge Representation
  • 12.1 Introduction
  • 12.1.1 Research Objectives
  • 12.2 Theoretical Concepts
  • 12.2.1 Knowledge
  • 12.2.2 Representation
  • 12.2.3 Roles of Architecture
  • 12.3 Research Design and Results
  • 12.3.1 Discussing Virtual Representations of Historical Architecture
  • 12.3.2 Creating Virtual Representations of Historical Architecture
  • 12.3.3 Learning Virtual Representations of Historical Architecture
  • 12.3.4 Recognising Virtual Representations of Historical Architecture
  • 12.4 Conclusion
  • References
  • Part V: Presence
  • Chapter 13: Gamified AR/VR Character Rendering and Animation-Enabling Technologies
  • 13.1 Introduction
  • 13.2 Previous Work
  • 13.3 Comparison of Unity 3D Game Engine and glGA Framework
  • 13.4 Review of Geometric Algebra Framework Used for Handling Transformations of Virtual Characters
  • 13.4.1 3D Euclidean Geometric Algebra
  • 13.4.2 Conformal Geometric Algebra
  • 13.4.2.1 Representing Entities in CGA
  • 13.4.2.2 Transformations in CGA
  • 13.4.3 Representing Quaternions and Dual Quaternions with Geometric Algebra
  • 13.5 Creating Interactive and Realistic Virtual Characters
  • 13.5.1 Rendering Virtual Characters for AR and VR
  • 13.5.1.1 Markerless AR Tracking for AR
  • 13.5.2 Real-Time Global Illumination Using PRT Methods
  • 13.5.2.1 Shadowed-Transfer and Unshadowed-Transfer PRT Implementation
  • 13.5.3 Interactive Characters with Procedural Animation
  • 13.5.3.1 Integration of SmartBody into Any Modern Shader-Based CG Framework
  • 13.5.4 AR Crowd Simulation Behavior
  • 13.5.4.1 Collision Avoidance and Path Generation
  • 13.6 Handling Virtual Characters Transformations with Geometric Algebra
  • 13.6.1 AR Scene Authoring with Geometric Algebra
  • 13.6.2 Animation Interpolation and GPU-Based Skinning
  • 13.6.3 GPU-Based Skinning Algorithm Description
  • 13.7 Results
  • 13.8 Conclusions and Future Work
  • References
  • Chapter 14: Experiencing the Multisensory Past
  • 14.1 Introduction
  • 14.2 Multisensory Perception
  • 14.2.1 The Perception Equation
  • 14.3 Real Virtuality
  • 14.3.1 Visuals
  • 14.3.2 Audio
  • 14.3.3 Feel
  • 14.3.4 Smell
  • 14.3.5 Taste
  • 14.4 Case Studies
  • 14.4.1 Kalabsha
  • 14.5 Medieval Pottery
  • 14.5.1 Medieval Pottery
  • 14.6 Discussion
  • References
  • Chapter 15: Multimodal Serious Games Technologies for Cultural Heritage
  • 15.1 Introduction
  • 15.2 Serious Games
  • 15.3 Gamification
  • 15.4 Technologies for Immersive Heritage Applications
  • 15.4.1 User Interfaces
  • 15.4.2 Virtual Environments
  • 15.4.3 Augmented Reality Environments
  • 15.5 Interactions for Cultural Heritage
  • 15.5.1 Interactions with Active and Passive Devices
  • 15.5.2 Interactions with Sound Interfaces
  • 15.5.3 Brain-Computer Interfaces
  • 15.6 A Generic Multimodal Environment for Cultural Heritage
  • 15.6.1 System Architecture
  • 15.6.2 Visualization
  • 15.6.3 Web-Based Virtual Environment
  • 15.7 Conclusions and Future Challenges
  • References
  • Part VI: Intangible Heritage
  • Chapter 16: Modelling Life Through Time: Cultural Heritage Case Studies
  • 16.1 Introduction
  • 16.2 Tangible Heritage
  • 16.2.1 3D Modelling
  • 16.2.1.1 Body and Head Modelling
  • 16.2.1.2 Cloth Modelling
  • 16.3 Intangible Heritage
  • 16.3.1 The Use of Animated Virtual Humans in Historical Sites
  • 16.3.2 Animating Virtual Humans
  • 16.3.2.1 Body Animation and Skinning
  • 16.3.2.2 Facial Animation
  • 16.3.3 Virtual Humans Re-enacting Activities in Historical Sites
  • 16.3.3.1 Inhabited Virtual Heritage Case Studies
  • The case study of thermopolium of Vetutius (LIFEPLUS project)
  • The case study of Aspendos (ERATO project)
  • 16.3.3.2 Virtual Simulation of a Historical Figure
  • Case Study: Simulation of John Calvin the Reformer
  • 16.4 Interactive Behaviour
  • 16.4.1 Introduction
  • 16.4.2 Tracking
  • 16.4.2.1 Acquisition
  • 16.4.2.2 Processing
  • 16.4.3 Analysis
  • 16.4.4 Behaviour Integration
  • 16.4.4.1 Behaviour Management System
  • 16.4.4.2 Gaze
  • 16.4.4.3 Locomotion
  • 16.4.5 Emotion Recognition
  • 16.4.6 User Feedback and Application
  • 16.5 Conclusion
  • References
  • Chapter 17: Preservation and Gamification of Traditional Sports
  • 17.1 Introduction
  • 17.2 Gamification for Traditional Sports and Games
  • 17.2.1 Platform Overview
  • 17.2.2 Description of the Infrastructure
  • 17.2.3 Interaction Experience of the User
  • 17.3 Traditional Sport and Game Capture, Modeling, and Animation
  • 17.3.1 Avatar Creation
  • 17.3.2 Motion Capture
  • 17.3.3 Avatar Animation
  • 17.4 Real-Time Tracking
  • 17.4.1 Orientation Estimation Using Inertial Sensors
  • 17.4.2 Sensor Placement
  • 17.4.3 Methodology
  • 17.5 Comparison and Feedback
  • 17.5.1 Compare and Score
  • 17.5.1.1 Preprocessing
  • 17.5.1.2 Alignment
  • 17.5.1.3 Compare
  • 17.5.2 Feedback and Visualization
  • 17.6 Conclusion and Results
  • References
  • Part VII: Ambient Intelligence and Storytelling
  • Chapter 18: Deployment of Robotic Guides in Museum Contexts
  • 18.1 Introduction
  • 18.2 Robot Design
  • 18.3 Autonomous Navigation in Dynamic Environments
  • 18.3.1 Environment Mapping
  • 18.3.2 Detection, Tracking, and Filtering of Dynamic Objects
  • 18.3.3 Path and Motion Planning
  • 18.4 Human-Robot Interaction
  • 18.4.1 Automatic Speech Recognition and Synthesis in Noisy Environments
  • 18.4.2 Visual Detection and Tracking of Humans
  • 18.4.3 Visual Attentive Cues for Intention Estimation
  • 18.4.4 Gesture Interpretation
  • 18.5 Interfaces
  • 18.6 Discussion
  • References
  • Chapter 19: Digital Cultural Heritage Experience in Ambient Intelligence
  • 19.1 Introduction
  • 19.2 Background and Related Work
  • 19.2.1 Virtual Museums
  • 19.2.2 Knowledge Models for CH
  • 19.2.3 Interactive Technologies for Virtual Museums
  • 19.2.4 Gamification Techniques for Digital Cultural Heritage
  • 19.3 A State-of-the-Art AmI Framework for Digital Cultural Heritage
  • 19.3.1 A Service-Oriented Middleware
  • 19.3.2 A Knowledge Representation Layer
  • 19.3.3 A Pool of Reusable Interaction Modalities
  • 19.4 Applications and Their Deployment in CHIs
  • 19.4.1 Personalized Interaction with Artworks
  • 19.4.1.1 Interacting with Large Digital Reproductions of Murals
  • 19.4.1.2 Interacting with Digital Reproductions of Paintings
  • 19.4.2 Mixed-Reality Technologies
  • 19.4.2.1 Augmenting Traditional Games with Non-ICT
  • 19.4.2.2 Making Traditional Artefacts Interactive
  • 19.4.2.3 Alternative Forms of Interaction with Terrain-Based Information
  • 19.4.2.4 Interacting with Moving Surfaces
  • 19.4.3 Gamification Techniques for Learning Purposes
  • 19.4.3.1 Interactive “Wall-Based´´ Games
  • 19.4.3.2 Playing with Words
  • 19.4.3.3 Learning Through Interactive Animations
  • 19.4.3.4 Experimenting with Interactive Surfaces for Children
  • 19.4.3.5 Interacting with Immersive Representations of Information
  • 19.4.4 Interactive Art Installations
  • 19.4.4.1 An Interactive Artwork Inspired by the History of the City of Heraklion
  • 19.4.4.2 An Interactive Sculpture Inspired by the Phaistos Disc
  • 19.4.4.3 An Interactive Sculpture Inspired by the Antikythera Mechanism
  • 19.4.5 Portable Mobile and Custom Hardware Devices
  • 19.4.5.1 Museum Guide
  • 19.4.5.2 Employing Custom Hardware Devices for Exploratory Learning
  • 19.5 Lessons Learned
  • 19.6 Conclusions and Future Work
  • References
  • Chapter 20: Storytelling and Digital Epigraphy-Based Narratives in Linked Open Data
  • 20.1 Introduction: “Every Inscription Has a Story to Tell´´
  • 20.2 The EAGLE Storytelling App
  • 20.2.1 Design, Rationale, and Intended Users
  • 20.2.2 The EAGLE Stories
  • 20.2.3 The Storytelling App for Authors
  • 20.2.4 The EpiDoc Generic Renderer
  • 20.2.5 Beyond EAGLE: Modularity and Extensibility
  • 20.3 Signs of Life: The EAGLE Virtual Exhibition
  • 20.3.1 Aims and Objectives
  • 20.3.2 Structure
  • 20.3.3 Functionalities
  • 20.4 Conclusions
  • References
  • Part VIII: Museum Applications
  • Chapter 21: AM-Based Evaluation, Reconstruction, and Improvement of Cultural Heritage Artifacts
  • 21.1 Introduction
  • 21.2 Entry Point and Precondition: Solid 3D CAD Model and Dataflow
  • 21.3 3D Printing
  • 21.4 Applications
  • 21.4.1 3D Printed Models
  • 21.4.2 Integrating and Improving Cultural Heritage Artifacts
  • 21.5 Case Studies
  • 21.5.1 Reconstruction of Missing Parts
  • 21.5.2 Big Objects
  • 21.5.2.1 Group of Persons
  • 21.5.2.2 The CHIO Horse
  • 21.5.2.3 The Sword of Messieur Dominique Perrault
  • 21.6 Scientific Investigations
  • 21.6.1 The Bust of the Egyptian Queen Tiye
  • 21.6.2 The Bust of the Egyptian Queen Nefertiti
  • 21.7 Commercial Aspects
  • 21.8 Conclusion
  • References
  • Chapter 22: The Willing Suspension of Disbelief: The Tangible and the Intangible of Heritage Educati
  • 22.1 Introduction: The Willing Suspension of Disbelief
  • 22.2 Visualizing Isaiah, the Project
  • 22.3 Text-Object-Text Loop and the Online Museum
  • 22.4 The Virtual and the Physical in Heritage-Related Education: Lesson from an EU Project
  • 22.5 Visualizing Isaiah Questionnaires: Quantitative and Qualitative Evaluation
  • 22.6 Conclusions
  • References
  • Chapter 23: Modelling of Static and Moving Objects: Digitizing Tangible and Intangible Cultural Heri
  • 23.1 Introduction
  • 23.2 State of the Art in 4D CH Modelling
  • 23.2.1 4D Modelling of Tangible CH Assets
  • 23.2.2 4D Modelling of Intangible CH Assets
  • 23.2.2.1 Digitalizing Intangible Cultural Heritage Content
  • 23.2.2.2 3D Modelling of Moving Objects
  • 23.2.2.3 Symbolic Representation and Semantic Signature Extraction
  • 23.3 The Proposed 4D Modelling Procedure
  • 23.3.1 4D Modelling of Tangible CH Assets
  • 23.3.2 4D Modelling of Intangible CH Assets
  • 23.3.2.1 Choreographic Analysis, Design and Modelling
  • 23.3.2.2 Capture and 3D Modelling of Static Objects
  • 23.3.2.3 3D Modelling of Moving Objects
  • 23.3.2.4 Symbolic Representation and Extraction of Semantic Signatures
  • 23.4 4D Viewer
  • 23.5 Conclusions
  • References
  • Index
Show More

Additional information

Veldu vöru

Rafbók til eignar, Leiga á rafbók í 60 daga, Leiga á rafbók í 30 daga, Leiga á rafbók í 120 daga, Leiga á rafbók í 90 daga, Leiga á rafbók í 365 daga, Leiga á rafbók í 180 daga

Aðrar vörur

0
    0
    Karfan þín
    Karfan þín er tómAftur í búð