An Introduction to Dynamic Meteorology

Höfundur Holton, James R.; Hakim, Gregory J

Útgefandi Elsevier S & T

Snið Page Fidelity

Print ISBN 9780123848666

Útgáfa 5

Útgáfuár

12.090 kr.

Description

Efnisyfirlit

  • Front Cover
  • An Introduction to Dynamic Meteorology
  • Dedication
  • Table of contents
  • Preface
  • 1 Introduction
  • 1.1 Dynamic Meteorology
  • 1.2 Conservation of Momentum
  • 1.2.1 Pressure Gradient Force
  • 1.2.2 Viscous Force
  • 1.2.3 Gravitational Force
  • 1.3 Noninertial Reference Frames and ”Apparent” Forces
  • 1.3.1 Centripetal Acceleration and Centrifugal Force
  • 1.3.2 Gravity Revisited
  • 1.3.3 The Coriolis Force and the Curvature Effect
  • 1.3.4 Constant Angular Momentum Oscillations
  • 1.4 Structure of the Static Atmosphere
  • 1.4.1 The Hydrostatic Equation
  • 1.4.2 Pressure as a Vertical Coordinate
  • 1.4.3 A Generalized Vertical Coordinate
  • 1.5 Kinematics
  • 1.6 Scale Analysis
  • Suggested References
  • Problems
  • Matlab Exercises
  • 2 Basic Conservation Laws
  • 2.1 Total Differentiation
  • 2.1.1 Total Differentiation of a Vector in a Rotating System
  • 2.2 The Vectorial Form of the Momentum Equation in Rotating Coordinates
  • 2.3 Component Equations in Spherical Coordinates
  • 2.4 Scale Analysis of the Equations of Motion
  • 2.4.1 Geostrophic Approximation and Geostrophic Wind
  • 2.4.2 Approximate Prognostic Equations: The Rossby Number
  • 2.4.3 The Hydrostatic Approximation
  • 2.5 The Continuity Equation
  • 2.5.1 A Eulerian Derivation
  • 2.5.2 A Lagrangian Derivation
  • 2.5.3 Scale Analysis of the Continuity Equation
  • 2.6 The Thermodynamic Energy Equation
  • 2.7 Thermodynamics of the Dry Atmosphere
  • 2.7.1 Potential Temperature
  • 2.7.2 The Adiabatic Lapse Rate
  • 2.7.3 Static Stability
  • 2.7.4 Scale Analysis of the Thermodynamic Energy Equation
  • 2.8 The Boussinesq Approximation
  • 2.9 Thermodynamics of the Moist Atmosphere
  • 2.9.1 Equivalent Potential Temperature
  • 2.9.2 The Pseudoadiabatic Lapse Rate
  • 2.9.3 Conditional Instability
  • Suggested References
  • Problems
  • Matlab Exercises
  • 3 Elementary Applications of the Basic Equations
  • 3.1 Basic Equations in Isobaric Coordinates
  • 3.1.1 The Horizontal Momentum Equation
  • 3.1.2 The Continuity Equation
  • 3.1.3 The Thermodynamic Energy Equation
  • 3.2 Balanced Flow
  • 3.2.1 Natural Coordinates
  • 3.2.2 Geostrophic Flow
  • 3.2.3 Inertial Flow
  • 3.2.4 Cyclostrophic Flow
  • 3.2.5 The Gradient Wind Approximation
  • 3.3 Trajectories and Streamlines
  • 3.4 The Thermal Wind
  • 3.4.1 Barotropic and Baroclinic Atmospheres
  • 3.5 Vertical Motion
  • 3.5.1 The Kinematic Method
  • 3.5.2 The Adiabatic Method
  • 3.6 Surface Pressure Tendency
  • Problems
  • Matlab Exercises
  • 4 Circulation, Vorticity, and Potential Vorticity
  • 4.1 The Circulation Theorem
  • 4.2 Vorticity
  • 4.2.1 Vorticity in Natural Coordinates
  • 4.3 The Vorticity Equation
  • 4.3.1 Cartesian Coordinate Form
  • 4.3.2 The Vorticity Equation in Isobaric Coordinates
  • 4.3.3 Scale Analysis of the Vorticity Equation
  • 4.4 Potential Vorticity
  • 4.5 Shallow Water Equations
  • 4.5.1 Barotropic Potential Vorticity
  • 4.6 Ertel Potential Vorticity in Isentropic Coordinates
  • 4.6.1 Equations of Motion in Isentropic Coordinates
  • 4.6.2 The Potential Vorticity Equation
  • 4.6.3 Integral Constraints on Isentropic Vorticity
  • Suggested References
  • Problems
  • Matlab Exercises
  • 5 Atmospheric Oscillations
  • 5.1 The Perturbation Method
  • 5.2 Properties of Waves
  • 5.2.1 Fourier Series
  • 5.2.2 Dispersion and Group Velocity
  • 5.2.3 Wave Properties in Two and Three Dimensions
  • 5.2.4 A Wave Solution Strategy
  • 5.3 Simple Wave Types
  • 5.3.1 Acoustic or Sound Waves
  • 5.3.2 Shallow Water Waves
  • 5.4 Internal Gravity (Buoyancy) Waves
  • 5.4.1 Pure Internal Gravity Waves
  • 5.5 Linear Waves of a Rotating Stratified Atmosphere
  • 5.5.1 Pure Inertial Oscillations
  • 5.5.2 Rossby and Inertia–Gravity Waves
  • 5.6 Adjustment to Geostrophic Balance
  • 5.7 Rossby Waves
  • 5.7.1 Free Barotropic Rossby Waves
  • 5.7.2 Forced Topographic Rossby Waves
  • Suggested References
  • Problems
  • Matlab Exercises
  • 6 Quasi-geostrophic Analysis
  • 6.1 The Observed Structure of Extratropical Circulations
  • 6.2 Derivation of the Quasi-Geostrophic Equations
  • 6.2.1 Preliminaries
  • 6.3 Potential Vorticity Derivation of the QG Equations
  • 6.4 Potential Vorticity Thinking
  • 6.4.2 PV Conservation and the QG ”Height Tendency” Equation
  • 6.5 Vertical Motion (w) Thinking
  • 6.6 Idealized Model of a Baroclinic Disturbance
  • 6.7 Isobaric Form of the QG Equations
  • Suggested References
  • Problems
  • Matlab Exercises
  • 7 Baroclinic Development
  • 7.1 Hydrodynamic Instability
  • 7.2 Normal Mode Baroclinic Instability: A Two-Layer Model
  • 7.2.1 Linear Perturbation Analysis
  • 7.2.2 Vertical Motion in Baroclinic Waves
  • 7.3 The Energetics of Baroclinic Waves
  • 7.3.1 Available Potential Energy
  • 7.3.2 Energy Equations for the Two-Layer Model
  • 7.4 Baroclinic Instability of a Continuously Stratified Atmosphere
  • 7.4.1 Log-Pressure Coordinates
  • 7.4.2 Baroclinic Instability: The Rayleigh Theorem
  • 7.4.3 The Eady Stability Problem
  • 7.5 Growth and Propagation of Neutral Modes
  • 7.5.1 Transient Growth of Neutral Waves
  • 7.5.2 Downstream Development
  • Suggested References
  • Problems
  • Matlab Exercises
  • 8 The Planetary Boundary Layer
  • 8.1 Atmospheric Turbulence
  • 8.1.1 Reynolds Averaging
  • 8.2 Turbulent Kinetic Energy
  • 8.3 Planetary Boundary Layer Momentum Equations
  • 8.3.1 Well-Mixed Boundary Layer
  • 8.3.2 The Flux–Gradient Theory
  • 8.3.3 The Mixing Length Hypothesis
  • 8.3.4 The Ekman Layer
  • 8.3.5 The Surface Layer
  • 8.3.6 The Modified Ekman Layer
  • 8.4 Secondary Circulations and Spin Down
  • Suggested References
  • Problems
  • Matlab Exercises
  • 9 Mesoscale Circulations
  • 9.1 Energy Sources for Mesoscale Circulations
  • 9.2 Fronts and Frontogenesis
  • 9.2.1 The Kinematics of Frontogenesis
  • 9.2.2 Semigeostrophic Theory
  • 9.2.3 Cross-Frontal Circulation
  • 9.3 Symmetric Baroclinic Instability
  • 9.4 Mountain Waves
  • 9.4.1 Waves over Sinusoidal Topography
  • 9.4.2 Flow over Isolated Ridges
  • 9.4.3 Lee Waves
  • 9.4.4 Downslope Windstorms
  • 9.5 Cumulus Convection
  • 9.5.1 Convective Available Potential Energy
  • 9.5.2 Entrainment
  • 9.6 Convective Storms
  • 9.6.1 Development of Rotation in Supercell Thunderstorms
  • 9.6.2 The Right-Moving Storm
  • 9.7 Hurricanes
  • 9.7.1 Dynamics of Mature Hurricanes
  • 9.7.2 Hurricane Development
  • Suggested References
  • Problems
  • Matlab Exercises
  • 10 The General Circulation
  • 10.1 The Nature of the Problem
  • 10.2 The Zonally Averaged Circulation
  • 10.2.1 The Conventional Eulerian Mean
  • 10.2.2 The Transformed Eulerian Mean
  • 10.2.3 The Zonal-Mean Potential Vorticity Equation
  • 10.3 The Angular Momentum Budget
  • 10.3.1 Sigma Coordinates
  • 10.3.2 The Zonal-Mean Angular Momentum
  • 10.4 The Lorenz Energy Cycle
  • 10.5 Longitudinally Dependent Time-Averaged Flow
  • 10.5.1 Stationary Rossby Waves
  • 10.5.2 Jet Stream and Storm Tracks
  • 10.6 Low-Frequency Variability
  • 10.6.1 Climate Regimes
  • 10.6.2 Annular Modes
  • 10.6.3 Sea Surface Temperature Anomalies
  • 10.7 Numerical Simulation of the General Circulation
  • 10.7.1 Dynamical Formulation
  • 10.7.2 Physical Processes and Parameterizations
  • 10.8 Climate Sensitivity, Feedbacks, and Uncertainty
  • Suggested References
  • Problems
  • Matlab Exercises
  • 11 Tropical Dynamics
  • 11.1 The Observed Structure of Large-Scale Tropical Circulations
  • 11.1.1 The Intertropical Convergence Zone
  • 11.1.2 Equatorial Wave Disturbances
  • 11.1.3 African Wave Disturbances
  • 11.1.4 Tropical Monsoons
  • 11.1.5 The Walker Circulation
  • 11.1.6 El Niño and the Southern Oscillation
  • 11.1.7 Equatorial Intraseasonal Oscillation
  • 11.2 Scale Analysis of Large-Scale Tropical Motions
  • 11.3 Condensation Heating
  • 11.4 Equatorial Wave Theory
  • 11.4.1 Equatorial Rossby and Rossby–Gravity Modes
  • 11.4.2 Equatorial Kelvin Waves
  • 11.5 Steady Forced Equatorial Motions
  • Suggested References
  • Problems
  • Matlab Exercises
  • 12 Middle Atmosphere Dynamics
  • 12.1 Structure and Circulation of the Middle Atmosphere
  • 12.2 The Zonal-Mean Circulation of the Middle Atmosphere
  • 12.2.1 Lagrangian Motion of Air Parcels
  • 12.2.2 The Transformed Eulerian Mean
  • 12.2.3 Zonal-Mean Transport
  • 12.3 Vertically Propagating Planetary Waves
  • 12.3.1 Linear Rossby Waves
  • 12.3.2 Rossby Wavebreaking
  • 12.4 Sudden Stratospheric Warmings
  • 12.5 Waves in the Equatorial Stratosphere
  • 12.5.1 Vertically Propagating Kelvin Waves
  • 12.5.2 Vertically Propagating Rossby–Gravity Waves
  • 12.5.3 Observed Equatorial Waves
  • 12.6 The Quasi-Biennial Oscillation
  • 12.7 Trace Constituent Transport
  • 12.7.1 Dynamical Tracers
  • 12.7.2 Chemical Tracers
  • 12.7.3 Transport in the Stratosphere
  • Suggested References
  • Problems
  • Matlab Exercises
  • 13 Numerical Modeling and Prediction
  • 13.1 Historical Background
  • 13.2 Numerical Approximation of the Equations of Motion
  • 13.2.1 Finite Differences
  • 13.2.2 Centered Differences: Explicit Time Differencing
  • 13.2.3 Computational Stability
  • 13.2.4 Implicit Time Differencing
  • 13.2.5 The Semi-Lagrangian Integration Method
  • 13.2.6 Truncation Error
  • 13.3 The Barotropic Vorticity Equation in Finite Differences
  • 13.4 The Spectral Method
  • 13.4.1 The Barotropic Vorticity Equation in Spherical Coordinates
  • 13.4.2 Rossby–Haurwitz Waves
  • 13.4.3 The Spectral Transform Method
  • 13.5 Primitive Equation Models
  • 13.5.1 Spectral Models
  • 13.5.2 Physical Parameterizations
  • 13.6 Data Assimilation
  • 13.6.1 Data Assimilation for a Single Variable
  • 13.6.2 Data Assimilation for Many Variables
  • 13.7 Predictability and Ensemble Forecasting
  • Suggested References
  • Problems
  • Matlab Exercises
  • Appendix A: Useful Constants and Parameters
  • Appendix B: List of Symbols
  • Appendix C: Vector Analysis
  • C.1 Vector Identities
  • C.2 Integral Theorems
  • C.3 Vector Operations in Various Coordinate Systems
  • Appendix D: Moisture Variables
  • D.1 Equivalent Potential Temperature
  • D.2 Pseudoadiabatic Lapse Rate
  • Appendix E: Standard Atmosphere Data
  • Appendix F: Symmetric Baroclinic Oscillations
  • Appendix G: Conditional Probability and Likelihood
  • Likelihood
  • Bibliography
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • Z
Show More

Additional information

Veldu vöru

Rafbók til eignar

Reviews

There are no reviews yet.

Be the first to review “An Introduction to Dynamic Meteorology”

Netfang þitt verður ekki birt. Nauðsynlegir reitir eru merktir *

Aðrar vörur

0
    0
    Karfan þín
    Karfan þín er tómAftur í búð