Heat Transfer

Höfundur Gregory Nellis; Sanford Klein

Útgefandi Cambridge University Press

Snið Page Fidelity

Print ISBN 9780521881074

Útgáfa 1

Útgáfuár

9.890 kr.

Description

Efnisyfirlit

  • Half-title
  • Title
  • Copyright
  • Deadication
  • CONTENTS
  • PREFACE
  • Acknowledgments
  • STUDY GUIDE
  • Graduate heat transfer class
  • Undergraduate heat transfer class
  • NOMENCLATURE
  • Greek Symbols
  • Superscripts
  • Subscripts
  • Other notes
  • HEAT TRANSFER
  • 1 One-Dimensional, Steady-State Conduction
  • 1.1 Conduction Heat Transfer
  • 1.1.1 Introduction
  • 1.1.2 Thermal Conductivity
  • Thermal Conductivity of a Gas
  • 1.2 Steady-State 1-D Conduction without Generation
  • 1.2.1 Introduction
  • 1.2.2 The Plane Wall
  • 1.2.3 The Resistance Concept
  • 1.2.4 Resistance to Radial Conduction through a Cylinder
  • 1.2.5 Resistance to Radial Conduction through a Sphere
  • 1.2.6 Other Resistance Formulae
  • Convection Resistance
  • Contact Resistance
  • Radiation Resistance
  • 1.3 Steady-State 1-D Conduction with Generation
  • 1.3.1 Introduction
  • 1.3.2 Uniform Thermal Energy Generation in a Plane Wall
  • 1.3.3 Uniform Thermal Energy Generation in Radial Geometries
  • 1.3.4 Spatially Non-Uniform Generation
  • 1.4 Numerical Solutions to Steady-State 1-D Conduction Problems (EES)
  • 1.4.1 Introduction
  • 1.4.2 Numerical Solutions in EES
  • 1.4.3 Temperature-Dependent Thermal Conductivity
  • 1.4.4 Alternative Rate Models
  • 1.5 Numerical Solutions to Steady-State 1-D Conduction Problems using
  • 1.5.1 Introduction
  • 1.5.2 Numerical Solutions in Matrix Format
  • 1.5.3 Implementing a Numerical Solution in MATLAB
  • 1.5.4 Functions
  • 1.5.5 Sparse Matrices
  • 1.5.6 Temperature-Dependent Properties
  • 1.6 Analytical Solutions for Constant Cross-Section Extended Surfaces
  • 1.6.1 Introduction
  • 1.6.2 The Extended Surface Approximation
  • 1.6.3 Analytical Solution
  • 1.6.4 Fin Behavior
  • 1.6.5 Fin Efficiency and Resistance
  • 1.6.6 Finned Surfaces
  • 1.6.7 Fin Optimization
  • 1.7 Analytical Solutions for Advanced Constant Cross-Section Extended Surfaces
  • 1.7.1 Introduction
  • 1.7.2 Additional Thermal Loads
  • 1.7.3 Moving Extended Surfaces
  • 1.8 Analytical Solutions for Non-Constant Cross-Section Extended Surfaces
  • 1.8.1 Introduction
  • 1.8.2 Series Solutions
  • 1.8.3 Bessel Functions
  • 1.8.4 Rules for using Bessel Functions
  • 1.9 Numerical Solution to Extended Surface Problems
  • 1.9.1 Introduction
  • Chapter 1: One-Dimensional, Steady-State Conduction
  • REFERENCES
  • 2 Two-Dimensional, Steady-State Conduction
  • 2.1 Shape Factors
  • 2.2 Separation of Variables Solutions
  • 2.2.1 Introduction
  • 2.2.2 Separation of Variables
  • Requirements for using Separation of Variables
  • Separate the Variables
  • Solve the Eigenproblem
  • Solve the Non-homogeneous Problem for each Eigenvalue
  • Obtain Solution for each Eigenvalue
  • Create the Series Solution and Enforce the Remaining Boundary Conditions
  • Summary of Steps
  • 2.2.3 Simple Boundary Condition Transformations
  • 2.3 Advanced Separation of Variables Solutions
  • 2.4 Superposition
  • 2.4.1 Introduction
  • 2.4.2 Superposition for 2-D Problems
  • 2.5 Numerical Solutions to Steady-State 2-D Problems with EES
  • 2.5.1 Introduction
  • 2.5.2 Numerical Solutions with EES
  • 2.6 Numerical Solutions to Steady-State 2-D Problems with MATLAB
  • 2.6.1 Introduction
  • 2.6.2 Numerical Solutions with MATLAB
  • 2.6.3 Numerical Solution by Gauss-Seidel Iteration
  • 2.7 Finite Element Solutions
  • 2.8 Resistance Approximations for Conduction Problems
  • 2.8.1 Introduction
  • 2.8.2 Isothermal and Adiabatic Resistance Limits
  • 2.8.3 Average Area and Average Length Resistance Limits
  • 2.9 Conduction through Composite Materials
  • 2.9.1 Effective Thermal Conductivity
  • Chapter 2: Two-Dimensional, Steady-State Conduction
  • Shape Factors
  • Separation of Variables Solutions
  • Advanced Separation of Variables Solutions
  • Superposition
  • Numerical Solutions to Steady-State 2-D Problems using EES
  • Finite-Difference Solutions to Steady-State 2-D Problems using MATLAB
  • Finite Element Solutions to Steady-State 2-D Problems using FEHT
  • Resistance Approximations for Conduction Problems
  • Conduction through Composite Materials
  • REFERENCES
  • 3 Transient Conduction
  • 3.1 Analytical Solutions to 0-D Transient Problems
  • 3.1.1 Introduction
  • 3.1.2 The Lumped Capacitance Assumption
  • 3.1.3 The Lumped Capacitance Problem
  • 3.1.4 The Lumped Capacitance Time Constant
  • 3.2 Numerical Solutions to 0-D Transient Problems
  • 3.2.1 Introduction
  • 3.2.2 Numerical Integration Techniques
  • Euler’s Method
  • Heun’s Method
  • Runge-Kutta Fourth Order Method
  • Fully Implicit Method
  • Crank-Nicolson Method
  • Adaptive Step-Size and EES’ Integral Command
  • MATLAB’s Ordinary Differential Equation Solvers
  • 3.3 Semi-Infinite 1-D Transient Problems
  • 3.3.1 Introduction
  • 3.3.2 The Diffusive Time Constant
  • 3.3.3 The Self-Similar Solution
  • 3.3.4 Solution to other Semi-Infinite Problems
  • 3.4 The Laplace Transform
  • 3.4.1 Introduction
  • 3.4.2 The Laplace Transformation
  • Laplace Transformations with Tables
  • Laplace Transformations with Maple
  • 3.4.3 The Inverse Laplace Transform
  • Inverse Laplace Transform with Tables and the Method of Partial Fractions
  • Inverse Laplace Transformation with Maple
  • 3.4.4 Properties of the Laplace Transformation
  • 3.4.5 Solution to Lumped Capacitance Problems
  • 3.4.6 Solution to Semi-Infinite Body Problems
  • 3.5 Separation of Variables for Transient Problems
  • 3.5.1 Introduction
  • 3.5.2 Separation of Variables Solutions for Common Shapes
  • The Plane Wall
  • The Cylinder
  • The Sphere
  • 3.5.3 Separation of Variables Solutions in Cartesian Coordinates
  • Requirements for using Separation of Variables
  • Separate the Variables
  • Solve the Eigenproblem
  • Solve the Non-homogeneous Problem for each Eigenvalue
  • Obtain a Solution for each Eigenvalue
  • Create the Series Solution and Enforce the Initial Condition
  • Limit Behaviors of the Separation of Variables Solution
  • 3.5.4 Separation of Variables Solutions in Cylindrical Coordinates
  • 3.5.5 Non-homogeneous Boundary Conditions
  • 3.6 Duhamel’s Theorem
  • 3.7 Complex Combination
  • 3.8 Numerical Solutions to 1-D Transient Problems
  • 3.8.1 Introduction
  • 3.8.2 Transient Conduction in a Plane Wall
  • Euler’s Method
  • Fully Implicit Method
  • Heun’s Method
  • Runge-Kutta 4th Order Method
  • Crank-Nicolson Method
  • EES’ Integral Command
  • 3.8.3 Temperature-Dependent Properties
  • 3.9 Reduction of Multi-Dimensional Transient Problems
  • Chapter 3: Transient Conduction
  • The Laplace Transform
  • Duhamel’s Theorem
  • Complex Combination
  • Transient Conduction Problems using FEHT (FEHT can be downloaded from www.cambridge.org/nellisandkle
  • REFERENCES
  • 4 External Forced Convection
  • 4.1 Introduction to Laminar Boundary Layers
  • 4.1.1 Introduction
  • 4.1.2 The Laminar Boundary Layer
  • A Conceptual Model of the Laminar Boundary Layer
  • A Conceptual Model of the Friction Coefficient and Heat Transfer Coefficient
  • The Reynolds Analogy
  • 4.1.3 Local and Integrated Quantities
  • 4.2 The Boundary Layer Equations
  • 4.2.1 Introduction
  • 4.2.2 The Governing Equations for Viscous Fluid Flow
  • The Continuity Equation
  • The Momentum Conservation Equations
  • The Thermal Energy Conservation Equation
  • 4.2.3 The Boundary Layer Simplifications
  • The Continuity Equation
  • The x-Momentum Equation
  • The y-Momentum Equation
  • The Thermal Energy Equation
  • 4.3 Dimensional Analysis in Convection
  • 4.3.1 Introduction
  • 4.3.2 Dimensionless Boundary Layer Equations
  • The Dimensionless Continuity Equation
  • The Dimensionless Momentum Equation in the Boundary Layer
  • The Dimensionless Thermal Energy Equation in the Boundary Layer
  • 4.3.3 Correlating the Solutions of the Dimensionless Equations
  • The Friction and Drag Coefficients
  • The Nusselt Number
  • 4.3.4 The Reynolds Analogy (revisited)
  • 4.4 Self-Similar Solution for Laminar Flow over a Flat Plate
  • 4.4.1 Introduction
  • 4.4.2 The Blasius Solution
  • The Problem Statement
  • The Similarity Variables
  • The Problem Transformation
  • Numerical Solution
  • 4.4.3 The Temperature Solution
  • The Problem Statement
  • The Similarity Variables
  • The Problem Transformation
  • Numerical Solution
  • 4.4.4 The Falkner-Skan Transformation
  • 4.5 Turbulent Boundary Layer Concepts
  • 4.5.1 Introduction
  • 4.5.2 A Conceptual Model of the Turbulent Boundary Layer
  • 4.6 The Reynolds Averaged Equations
  • 4.6.1 Introduction
  • 4.6.2 The Averaging Process
  • The Reynolds Averaged Continuity Equation
  • The Reynolds Averaged Momentum Equation
  • The Reynolds Averaged Thermal Energy Equation
  • 4.7 The Laws of the Wall
  • 4.7.1 Introduction
  • 4.7.2 Inner Variables
  • 4.7.3 Eddy Diffusivity of Momentum
  • 4.7.4 The Mixing Length Model
  • 4.7.5 The Universal Velocity Profile
  • 4.7.6 Eddy Diffusivity of Momentum Models
  • 4.7.7 Wake Region
  • 4.7.8 Eddy Diffusivity of Heat Transfer
  • 4.7.9 The Thermal Law of the Wall
  • 4.8 Integral Solutions
  • 4.8.1 Introduction
  • 4.8.2 The Integral Form of the Momentum Equation
  • Derivation of the Integral Form of the Momentum Equation
  • Application of the Integral Form of the Momentum Equation
  • 4.8.3 The Integral Form of the Energy Equation
  • Derivation of the Integral Form of the Energy Equation
  • Application of the Integral Form of the Energy Equation
  • 4.8.4 Integral Solutions for Turbulent Flows
  • 4.9 External Flow Correlations
  • 4.9.1 Introduction
  • 4.9.2 Flow over a Flat Plate
  • Friction Coefficient
  • Nusselt Number
  • Unheated Starting Length
  • Constant Heat Flux
  • Flow over a Rough Plate
  • 4.9.3 Flow across a Cylinder
  • Drag Coefficient
  • Nusselt Number
  • Flow across a Bank of Cylinders
  • Non-Circular Extrusions
  • 4.9.4 Flow Past a Sphere
  • Chapter 4: External Convection
  • Introduction to Laminar Boundary Layers
  • The Boundary Layer Equations and Dimensional Analysis in Convection
  • The Self-Similar Solution for Laminar Flow over a Flat Plate
  • Turbulence
  • Integral Solutions
  • External Flow Correlations
  • REFERENCES
  • 5 Internal Forced Convection
  • 5.1 Internal Flow Concepts
  • 5.1.1 Introduction
  • 5.1.2 Momentum Considerations
  • The Mean Velocity
  • The Laminar Hydrodynamic Entry Length
  • Turbulent Internal Flow
  • The Turbulent Hydrodynamic Entry Length
  • The Friction Factor
  • 5.1.3 Thermal Considerations
  • The Mean Temperature
  • The Heat Transfer Coefficient and Nusselt Number
  • The Laminar Thermal Entry Length
  • Turbulent Internal Flow
  • 5.2 Internal Flow Correlations
  • 5.2.1 Introduction
  • 5.2.2 Flow Classification
  • 5.2.3 Friction Factor
  • Laminar Flow
  • Turbulent Flow
  • EES’ Internal Flow Convection Library
  • 5.2.4 The Nusselt Number
  • Laminar Flow
  • Turbulent Flow
  • 5.3 The Energy Balance
  • 5.3.1 Introduction
  • 5.3.2 The Energy Balance
  • 5.3.3 Prescribed Heat Flux
  • Constant Heat Flux
  • 5.3.4 Prescribed Wall Temperature
  • Constant Wall Temperature
  • 5.3.4 Prescribed External Temperature
  • 5.4 Analytical Solutions for Internal Flows
  • 5.4.1 Introduction
  • 5.4.2 The Momentum Equation
  • Fully Developed Flow between Parallel Plates
  • The Reynolds Equation
  • Fully Developed Flow in a Circular Tube
  • 5.4.3 The Thermal Energy Equation
  • Fully Developed Flow through a Round Tube with a Constant Heat Flux
  • Fully Developed Flow between Parallel Plates with a Constant Heat Flux
  • 5.5 Numerical Solutions to Internal Flow Problems
  • 5.5.1 Introduction
  • 5.5.2 Hydrodynamically Fully Developed Laminar Flow
  • The Euler Technique
  • MATLAB’s Ordinary Differential Equation Solvers
  • 5.5.3 Hydrodynamically Fully Developed Turbulent Flow
  • Chapter 5: Internal Convection
  • Internal Flow Concepts
  • Internal Flow Correlations and the Energy Balance
  • Analytical Solutions to Internal Flow Problems
  • Numerical Solutions to Internal Flow Problems
  • REFERENCES
  • 6 Natural Convection
  • 6.1 Natural Convection Concepts
  • 6.1.1 Introduction
  • 6.1.2 Dimensionless Parameters for Natural Convection
  • Identification from Physical Reasoning
  • Identification from the Governing Equations
  • 6.2 Natural Convection Correlations
  • 6.2.1 Introduction
  • 6.2.2 Plate
  • Heated or Cooled Vertical Plate
  • Horizontal Heated Upward Facing or Cooled Downward Facing Plate
  • Horizontal Heated Downward Facing or Cooled Upward Facing Plate
  • Plate at an Arbitrary Tilt Angle
  • 6.2.3 Sphere
  • 6.2.4 Cylinder
  • Horizontal Cylinder
  • Vertical Cylinder
  • 6.2.5 Open Cavity
  • Vertical Parallel Plates
  • 6.2.6 Enclosures
  • 6.2.7 Combined Free and Forced Convection
  • 6.3 Self-Similar Solution
  • 6.4 Integral Solution
  • Chapter 6: Natural Convection
  • Natural Convection Correlations
  • Self-Similar Solution
  • REFERENCES
  • 7 Boiling and Condensation
  • 7.1 Introduction
  • 7.2 Pool Boiling
  • 7.2.1 Introduction
  • 7.2.2 The Boiling Curve
  • 7.2.3 Pool Boiling Correlations
  • 7.3 Flow Boiling
  • 7.3.1 Introduction
  • 7.3.2 Flow Boiling Correlations
  • 7.4 Film Condensation
  • 7.4.1 Introduction
  • 7.4.2 Solution for Inertia-Free Film Condensation on a Vertical Wall
  • 7.4.3 Correlations for Film Condensation
  • Vertical Wall
  • Horizontal, Downward Facing Plate
  • Horizontal, Upward Facing Plate
  • Single Horizontal Cylinder
  • Bank of Horizontal Cylinders
  • Single Horizontal Finned Tube
  • 7.5 Flow Condensation
  • 7.5.1 Introduction
  • 7.5.2 Flow Condensation Correlations
  • Chapter 7: Boiling and Condensation
  • Pool Boiling
  • Flow Boiling
  • Film Condensation
  • Flow Condensation
  • REFERENCES
  • 8 Heat Exchangers
  • 8.1 Introduction to Heat Exchangers
  • 8.1.1 Introduction
  • 8.1.2 Applications of Heat Exchangers
  • 8.1.3 Heat Exchanger Classifications and Flow Paths
  • 8.1.4 Overall Energy Balances
  • 8.1.5 Heat Exchanger Conductance
  • Fouling Resistance
  • 8.1.6 Compact Heat Exchanger Correlations
  • 8.2 The Log-Mean Temperature Difference Method
  • 8.2.1 Introduction
  • 8.2.2 LMTD Method for Counter-Flow and Parallel-Flow Heat Exchangers
  • 8.2.3 LMTD Method for Shell-and-Tube and Cross-flow Heat Exchangers
  • 8.3 The Effectiveness-NTU Method
  • 8.3.1 Introduction
  • 8.3.2 The Maximum Heat Transfer Rate
  • 8.3.3 Heat Exchanger Effectiveness
  • 8.3.4 Further Discussion of Heat Exchanger Effectiveness
  • Behavior as CR Approaches Zero
  • Behavior as NTU Approaches Zero
  • Behavior as NTU Becomes Infinite
  • Heat Exchanger Design
  • 8.4 Pinch Point Analysis
  • 8.4.1 Introduction
  • 8.4.2 Pinch Point Analysis for a Single Heat Exchanger
  • 8.4.3 Pinch Point Analysis for a Heat Exchanger Network
  • 8.5 Heat Exchangers with Phase Change
  • 8.5.1 Introduction
  • 8.5.2 Sub-Heat Exchanger Model for Phase-Change
  • 8.6 Numerical Model of Parallel- and Counter-Flow Heat Exchangers
  • 8.6.1 Introduction
  • 8.6.2 Numerical Integration of Governing Equations
  • Parallel-Flow Configuration
  • 8.6.3 Discretization into Sub-Heat Exchangers
  • Parallel-Flow Configuration
  • Counter-Flow Configuration
  • 8.6.4 Solution with Axial Conduction
  • 8.7 Axial Conduction in Heat Exchangers
  • 8.7.1 Introduction
  • 8.7.2 Approximate Models for Axial Conduction
  • Approximate Model at Low λ
  • Approximate Model at High λ
  • Temperature Jump Model
  • 8.8 Perforated Plate Heat Exchangers
  • 8.8.1 Introduction
  • 8.8.2 Modeling Perforated Plate Heat Exchangers
  • 8.9 Numerical Modeling of Cross-Flow Heat Exchangers
  • 8.9.1 Introduction
  • 8.9.2 Finite Difference Solution
  • Both Fluids Unmixed with Uniform Properties
  • Both Fluids Unmixed with Temperature-Dependent Properties
  • One Fluid Mixed, One Fluid Unmixed
  • Both Fluids Mixed
  • 8.10 Regenerators
  • 8.10.1 Introduction
  • 8.10.2 Governing Equations
  • 8.10.3 Balanced, Symmetric Flow with No Entrained Fluid Heat Capacity
  • Utilization and Number of Transfer Units
  • Regenerator Effectiveness
  • 8.10.4 Correlations for Regenerator Matrices
  • Packed Bed of Spheres
  • Screens
  • Triangular Passages
  • 8.10.5 Numerical Model of a Regenerator with No Entrained Heat Capacity
  • Chapter 8: Heat Exchangers
  • Introduction to Heat Exchangers
  • The Effectiveness-NTU Method
  • Numerical Modeling of Parallel-Flow and Counter-Flow Heat Exchangers
  • Regenerators
  • REFERENCES
  • 9 Mass Transfer
  • Chapter 9: Mass Transfer
  • Mass Transfer Concepts
  • Mass Diffusion and Fick’s Law
  • Transient Diffusion through a Stationary Medium
  • Mass Convection
  • Simultaneous Heat and Mass Transfer
  • Cooling Coil Analysis
  • 10 Radiation
  • 10.1 Introduction to Radiation
  • 10.1.1 Radiation
  • 10.1.2 The Electromagnetic Spectrum
  • 10.2 Emission of Radiation by a Blackbody
  • 10.2.1 Introduction
  • 10.2.2 Blackbody Emission
  • Planck’s Law
  • Blackbody Emission in Specified Wavelength Bands
  • 10.3 Radiation Exchange between Black Surfaces
  • 10.3.1 Introduction
  • 10.3.2 View Factors
  • The Enclosure Rule
  • Reciprocity
  • Other View Factor Relationships
  • The Crossed and Uncrossed Strings Method
  • View Factor Library
  • 10.3.3 Blackbody Radiation Calculations
  • The Space Resistance
  • N-Surface Solutions
  • 10.3.4 Radiation Exchange between Non-Isothermal Surfaces
  • 10.4 Radiation Characteristics of Real Surfaces
  • 10.4.1 Introduction
  • 10.4.2 Emission of Real Materials
  • Intensity
  • Spectral, Directional Emissivity
  • Hemispherical Emissivity
  • Total Hemispherical Emissivity
  • The Diffuse Surface Approximation
  • The Diffuse Gray Surface Approximation
  • The Semi-Gray Surface
  • 10.4.3 Reflectivity, Absorptivity, and Transmittivity
  • Diffuse and Specular Surfaces
  • Hemispherical Reflectivity, Absorptivity, and Transmittivity
  • Kirchoff’s Law
  • Total Hemispherical Values
  • The Diffuse Surface Approximation
  • The Diffuse Gray Surface Approximation
  • The Semi-Gray Surface
  • 10.5 Diffuse Gray Surface Radiation Exchange
  • 10.5.1 Introduction
  • 10.5.2 Radiosity
  • 10.5.3 Gray Surface Radiation Calculations
  • 10.5.4 The Parameter
  • 10.5.5 Radiation Exchange for Semi-Gray Surfaces
  • 10.6 Radiation with other Heat Transfer Mechanisms
  • 10.6.1 Introduction
  • 10.6.2 When Is Radiation Important?
  • 10.6.3 Multi-Mode Problems
  • 10.7 The Monte Carlo Method
  • 10.7.1 Introduction
  • 10.7.2 Determination of View Factors with the Monte Carlo Method
  • Select a Location on Surface 1
  • Select the Direction of the Ray
  • Determine whether the Ray from Surface 1 Strikes Surface 2
  • 10.7.3 Radiation Heat Transfer Determined by the Monte Carlo Method
  • Chapter 10: Radiation
  • Emission of Radiation by a Blackbody
  • Radiation Exchange between Black Surfaces
  • Radiation Characteristics of Real Surfaces
  • Diffuse Gray Surface Radiation Exchange
  • Radiation with other Heat Transfer Mechanisms
  • The Monte Carlo Method
  • REFERENCES
  • Appendices
  • A.1: Introduction to EES
  • A.2: Introduction to Maple
  • A.3: Introduction to MATLAB
  • A.4: Introduction to FEHT
  • A.5: Introduction to Economics
  • INDEX
Show More

Additional information

Veldu vöru

Rafbók til eignar, Leiga á rafbók í 180 daga

Reviews

There are no reviews yet.

Be the first to review “Heat Transfer”

Netfang þitt verður ekki birt. Nauðsynlegir reitir eru merktir *

Aðrar vörur

0
    0
    Karfan þín
    Karfan þín er tómAftur í búð