High Energy Astrophysics

Höfundur Malcolm S. Longair

Útgefandi Cambridge University Press

Snið ePub

Print ISBN 9780521756181

Útgáfa 3

Útgáfuár

13.890 kr.

Description

Efnisyfirlit

  • Cover
  • Half Title
  • Title Page
  • Copyright
  • Dedication
  • Contents
  • Preface
  • Acknowledgements
  • Part I: Astronomical background
  • 1. High energy astrophysics – an introduction
  • 1.1 High energy astrophysics and modern physics and astronomy
  • 1.2 The sky in different astronomical wavebands
  • 1.3 Optical waveband
  • 1.4 Infrared waveband
  • 1.5 Millimetre and submillimetre waveband
  • 1.6 Radio waveband
  • 1.7 Ultraviolet waveband
  • 1.8 X-ray waveband
  • 1.9 γ-ray waveband
  • 1.10 Cosmic ray astrophysics
  • 1.11 Other non-electromagnetic astronomies
  • 1.12 Concluding remarks
  • 2. The stars and stellar evolution
  • 2.1 Introduction
  • 2.2 Basic observations
  • 2.3 Stellar structure
  • 2.4 The equations of energy generation and energy transport
  • 2.5 The equations of stellar structure
  • 2.6 The Sun as a star
  • 2.7 Evolution of high and low mass stars
  • 2.8 Stellar evolution on the colour–magnitude diagram
  • 2.9 Mass loss
  • 2.10 Conclusion
  • 3. The galaxies
  • 3.1 Introduction
  • 3.2 The Hubble sequence
  • 3.3 The red and blue sequences
  • 3.4 Further correlations among the properties of galaxies
  • 3.5 The masses of galaxies
  • 3.6 The luminosity function of galaxies
  • 4. Clusters of galaxies
  • 4.1 The morphologies of rich clusters of galaxies
  • 4.2 Clusters of galaxies and isothermal gas spheres
  • 4.3 The Coma Cluster of galaxies
  • 4.4 Mass distribution of hot gas and dark matter in clusters
  • 4.5 Cooling flows in clusters of galaxies
  • 4.6 The Sunyaev–Zeldovich effect in hot intracluster gas
  • 4.7 Gravitational lensing by galaxies and clusters of galaxies
  • 4.8 Dark matter in galaxies and clusters of galaxies
  • Part II: Physical processes
  • 5. Ionisation losses
  • 5.1 Introduction
  • 5.2 Ionisation losses – non-relativistic treatment
  • 5.3 The relativistic case
  • 5.4 Practical forms of the ionisation loss formulae
  • 5.5 Ionisation losses of electrons
  • 5.6 Nuclear emulsions, plastics and meteorites
  • 5.7 Dynamical friction
  • 6. Radiation of accelerated charged particles and bremsstrahlung of electrons
  • 6.1 Introduction
  • 6.2 The radiation of accelerated charged particles
  • 6.3 Bremsstrahlung
  • 6.4 Non-relativistic bremsstrahlung energy loss rate
  • 6.5 Thermal bremsstrahlung
  • 6.6 Relativistic bremsstrahlung
  • 7. The dynamics of charged particles in magnetic fields
  • 7.1 A uniform static magnetic field
  • 7.2 A time-varying magnetic field
  • 7.3 The scattering of charged particles by irregularities in the magnetic field
  • 7.4 The scattering of high energy particles by Alfvén and hydromagnetic waves
  • 7.5 The diffusion-loss equation for high energy particles
  • 8. Synchrotron radiation
  • 8.1 The total energy loss rate
  • 8.2 Non-relativistic gyroradiation and cyclotron radiation
  • 8.3 The spectrum of synchrotron radiation – physical arguments
  • 8.4 The spectrum of synchrotron radiation – a fuller version
  • 8.5 The synchrotron radiation of a power-law distribution of electron energies
  • 8.6 The polarisation of synchrotron radiation
  • 8.7 Synchrotron self-absorption
  • 8.8 Useful numerical results
  • 8.9 The radio emission of the Galaxy
  • 9. Interactions of high energy photons
  • 9.1 Photoelectric absorption
  • 9.2 Thomson and Compton scattering
  • 9.3 Inverse Compton scattering
  • 9.4 Comptonisation
  • 9.5 The Sunyaev–Zeldovich effect
  • 9.6 Synchrotron–self-Compton radiation
  • 9.7 Cherenkov radiation
  • 9.8 Electron–positron pair production
  • 9.9 Electron–photon cascades, electromagnetic showers and the detection of ultra-high energy γ-rays
  • 9.10 Electron–positron annihilation and positron production mechanisms
  • 10. Nuclear interactions
  • 10.1 Nuclear interactions and high energy astrophysics
  • 10.2 Spallation cross-sections
  • 10.3 Nuclear emission lines
  • 10.4 Cosmic rays in the atmosphere
  • 11. Aspects of plasma physics and magnetohydrodynamics
  • 11.1 Elementary concepts in plasma physics
  • 11.2 Magnetic flux freezing
  • 11.3 Shock waves
  • 11.4 The Earth’s magnetosphere
  • 11.5 Magnetic buoyancy
  • 11.6 Reconnection of magnetic lines of force
  • Part III: High energy astrophysics in our Galaxy
  • 12. Interstellar gas and magnetic fields
  • 12.1 The interstellar medium in the life cycle of stars
  • 12.2 Diagnostic tools – neutral interstellar gas
  • 12.3 Ionised interstellar gas
  • 12.4 Interstellar dust
  • 12.5 An overall picture of the interstellar gas
  • 12.6 Star formation
  • 12.7 The Galactic magnetic field
  • 13. Dead stars
  • 13.1 Supernovae
  • 13.2 White dwarfs, neutron stars and the Chandrasekhar limit
  • 13.3 White dwarfs
  • 13.4 Neutron stars
  • 13.5 The discovery of neutron stars
  • 13.6 The Galactic population of neutron stars
  • 13.7 Thermal emission of neutron stars
  • 13.8 Pulsar glitches
  • 13.9 The pulsar magnetosphere
  • 13.10 The radio and high energy emission of pulsars
  • 13.11 Black holes
  • 14. Accretion power in astrophysics
  • 14.1 Introduction
  • 14.2 Accretion – general considerations
  • 14.3 Thin accretion discs
  • 14.4 Thick discs and advective flows
  • 14.5 Accretion in binary systems
  • 14.6 Accreting binary systems
  • 14.7 Black holes in X-ray binaries
  • 14.8 Final thoughts
  • 15. Cosmic rays
  • 15.1 The energy spectra of cosmic ray protons and nuclei
  • 15.2 The abundances of the elements in the cosmic rays
  • 15.3 The isotropy and energy density of cosmic rays
  • 15.4 Gamma ray observations of the Galaxy
  • 15.5 The origin of the light elements in the cosmic rays
  • 15.6 The confinement time of cosmic rays in the Galaxy and cosmic ray clocks
  • 15.7 The confinement volume for cosmic rays
  • 15.8 The Galactic halo
  • 15.9 The highest energy cosmic rays and extensive air-showers
  • 15.10 Observations of the highest energy cosmic rays
  • 15.11 The isotropy of ultra-high energy cosmic rays
  • 15.12 The Greisen–Kuzmin–Zatsepin (GKZ) cut-off
  • 16. The origin of cosmic rays in our Galaxy
  • 16.1 Introduction
  • 16.2 Energy loss processes for high energy electrons
  • 16.3 Diffusion-loss equation for high energy electrons
  • 16.4 Supernova remnants as sources of high energy particles
  • 16.5 The minimum energy requirements for synchrotron radiation
  • 16.6 Supernova remnants as sources of high energy electrons
  • 16.7 The evolution of supernova remnants
  • 16.8 The adiabatic loss problem and the acceleration of high energy particles
  • 17. The acceleration of high energy particles
  • 17.1 General principles of acceleration
  • 17.2 The acceleration of particles in solar flares
  • 17.3 Fermi acceleration – original version
  • 17.4 Diffusive shock acceleration in strong shock waves
  • 17.5 Beyond the standard model
  • 17.6 The highest energy cosmic rays
  • Part IV: Extragalactic high energy astrophysics
  • 18. Active galaxies
  • 18.1 Introduction
  • 18.2 Radio galaxies and high energy astrophysics
  • 18.3 The quasars
  • 18.4 Seyfert galaxies
  • 18.5 Blazars, superluminal sources and γ-ray sources
  • 18.6 Low Ionisation Nuclear Emission Regions – LINERs
  • 18.7 Ultra-Luminous InfraRed Galaxies – ULIRGs
  • 18.8 X-ray surveys of active galaxies
  • 18.9 Unification schemes for active galaxies
  • 19. Black holes in the nuclei of galaxies
  • 19.1 The properties of black holes
  • 19.2 Elementary considerations
  • 19.3 Dynamical evidence for supermassive black holes in galactic nuclei
  • 19.4 The Soltan argument
  • 19.5 Black holes and spheroid masses
  • 19.6 X-ray observations of fluorescence lines in active galactic nuclei
  • 19.7 The growth of black holes in the nuclei of galaxies
  • 20. The vicinity of the black hole
  • 20.1 The prime ingredients of active galactic nuclei
  • 20.2 The continuum spectrum
  • 20.3 The emission line regions – the overall picture
  • 20.4 The narrow-line regions – the example of Cygnus A
  • 20.5 The broad-line regions and reverberation mapping
  • 20.6 The alignment effect and shock excitation of emission line regions
  • 20.7 Accretion discs about supermassive black holes
  • 21. Extragalactic radio sources
  • 21.1 Extended radio sources – Fanaroff–Riley types
  • 21.2 The astrophysics of FR2 radio sources
  • 21.3 The FR1 radio sources
  • 21.4 The microquasars
  • 21.5 Jet physics
  • 22. Compact extragalactic sources and superluminal motions
  • 22.1 Compact radio sources
  • 22.2 Superluminal motions
  • 22.3 Relativistic beaming
  • 22.4 The superluminal source population
  • 22.5 Synchro-Compton radiation and the inverse Compton catastrophe
  • 22.6 γ-ray sources in active galactic nuclei
  • 22.7 γ-ray bursts
  • 23. Cosmological aspects of high energy astrophysics
  • 23.1 The cosmic evolution of galaxies and active galaxies
  • 23.2 The essential theoretical tools
  • 23.3 The evolution of non-thermal sources with cosmic epoch
  • 23.4 The evolution of thermal sources with cosmic epoch
  • 23.5 Mid- and far-infrared number counts
  • 23.6 Submillimetre number counts
  • 23.7 The global star-formation rate
  • 23.8 The old red galaxies
  • 23.9 Putting it all together
  • Appendix: Astronomical conventions and nomenclature
  • A.1 Galactic coordinates and projections of the celestial sphere onto a plane
  • A.2 Distances in astronomy
  • A.3 Masses in astronomy
  • A.4 Flux densities, luminosities, magnitudes and colours
  • A.5 Diffraction-limited telescopes
  • A.6 Interferometry and synthesis imaging
  • A.7 The sensitivities of astronomical detectors
  • A.8 Units and relativistic notation
  • Bibliography
  • Name index
  • Object index
  • Index
Show More

Additional information

Veldu vöru

Rafbók til eignar

Reviews

There are no reviews yet.

Be the first to review “High Energy Astrophysics”

Netfang þitt verður ekki birt. Nauðsynlegir reitir eru merktir *

Aðrar vörur

0
    0
    Karfan þín
    Karfan þín er tómAftur í búð