Incropera’s Principles of Heat and Mass Transfer: Global Edition

Höfundur Theodore L. Bergman; Adrienne S. Lavine; Frank P. Incropera; David P. DeWitt

Útgefandi Wiley Global Education US

Snið ePub

Print ISBN 9781119382911

Útgáfa 1

Útgáfuár 2017

8.590 kr.

Description

Efnisyfirlit

  • Cover
  • Copyright
  • Preface
  • Contents
  • Symbols
  • Chapter 1 Introduction
  • 1.1 What and How?
  • 1.2 Physical Origins and Rate Equations
  • 1.2.1 Conduction
  • 1.2.2 Convection
  • 1.2.3 Radiation
  • 1.2.4 The Thermal Resistance Concept
  • 1.3 Relationship to Thermodynamics
  • 1.3.1 Relationship to the First Law of Thermodynamics (Conservation of Energy)
  • 1.3.2 Relationship to the Second Law of Thermodynamics and the Efficiency of Heat Engines
  • 1.4 Units and Dimensions
  • 1.5 Analysis of Heat Transfer Problems: Methodology
  • 1.6 Relevance of Heat Transfer
  • 1.7 Summary
  • References
  • Problems
  • Chapter 2 Introduction to Conduction
  • 2.1 The Conduction Rate Equation
  • 2.2 The Thermal Properties of Matter
  • 2.2.1 Thermal Conductivity
  • 2.2.2 Other Relevant Properties
  • 2.3 The Heat Diffusion Equation
  • 2.4 Boundary and Initial Conditions
  • 2.5 Summary
  • References
  • Problems
  • Chapter 3 One-Dimensional, Steady-State Conduction
  • 3.1 The Plane Wall
  • 3.1.1 Temperature Distribution
  • 3.1.2 Thermal Resistance
  • 3.1.3 The Composite Wall
  • 3.1.4 Contact Resistance
  • 3.1.5 Porous Media
  • 3.2 An Alternative Conduction Analysis
  • 3.3 Radial Systems
  • 3.3.1 The Cylinder
  • 3.3.2 The Sphere
  • 3.4 Summary of One-Dimensional Conduction Results
  • 3.5 Conduction with Thermal Energy Generation
  • 3.5.1 The Plane Wall
  • 3.5.2 Radial Systems
  • 3.5.3 Tabulated Solutions
  • 3.5.4 Application of Resistance Concepts
  • 3.6 Heat Transfer from Extended Surfaces
  • 3.6.1 A General Conduction Analysis
  • 3.6.2 Fins of Uniform Cross-Sectional Area
  • 3.6.3 Fin Performance Parameters
  • 3.6.4 Fins of Nonuniform Cross-Sectional Area
  • 3.6.5 Overall Surface Efficiency
  • 3.7 Other Applications of One-Dimensional, Steady-State Conduction
  • 3.7.1 The Bioheat Equation
  • 3.7.2 Thermoelectric Power Generation
  • 3.7.3 Nanoscale Conduction
  • 3.8 Summary
  • References
  • Problems
  • Chapter 4 Two-Dimensional, Steady-State Conduction
  • 4.1 General Considerations and Solution Techniques
  • 4.2 The Method of Separation of Variables
  • 4.3 The Conduction Shape Factor and the Dimensionless Conduction Heat Rate
  • 4.4 Finite-Difference Equations
  • 4.4.1 The Nodal Network
  • 4.4.2 Finite-Difference Form of the Heat Equation: No Generation and Constant Properties
  • 4.4.3 Finite-Difference Form of the Heat Equation: The Energy Balance Method
  • 4.5 Solving the Finite-Difference Equations
  • 4.5.1 Formulation as a Matrix Equation
  • 4.5.2 Verifying the Accuracy of the Solution
  • 4.6 Summary
  • References
  • Problems
  • Chapter 5 Transient Conduction
  • 5.1 The Lumped Capacitance Method
  • 5.2 Validity of the Lumped Capacitance Method
  • 5.3 General Lumped Capacitance Analysis
  • 5.3.1 Radiation Only
  • 5.3.2 Negligible Radiation
  • 5.3.3 Convection Only with Variable Convection Coefficient
  • 5.3.4 Additional Considerations
  • 5.4 Spatial Effects
  • 5.5 The Plane Wall with Convection
  • 5.5.1 Exact Solution
  • 5.5.2 Approximate Solution
  • 5.5.3 Total Energy Transfer: Approximate Solution
  • 5.5.4 Additional Considerations
  • 5.6 Radial Systems with Convection
  • 5.6.1 Exact Solutions
  • 5.6.2 Approximate Solutions
  • 5.6.3 Total Energy Transfer: Approximate Solutions
  • 5.6.4 Additional Considerations
  • 5.7 The Semi-Infinite Solid
  • 5.8 Objects with Constant Surface Temperatures or Surface Heat Fluxes
  • 5.8.1 Constant Temperature Boundary Conditions
  • 5.8.2 Constant Heat Flux Boundary Conditions
  • 5.8.3 Approximate Solutions
  • 5.9 Periodic Heating
  • 5.10 Finite-Difference Methods
  • 5.10.1 Discretization of the Heat Equation: The Explicit Method
  • 5.10.2 Discretization of the Heat Equation: The Implicit Method
  • 5.11 Summary
  • References
  • Problems
  • Chapter 6 Introduction to Convection
  • 6.1 The Convection Boundary Layers
  • 6.1.1 The Velocity Boundary Layer
  • 6.1.2 The Thermal Boundary Layer
  • 6.1.3 The Concentration Boundary Layer
  • 6.1.4 Significance of the Boundary Layers
  • 6.2 Local and Average Convection Coefficients
  • 6.2.1 Heat Transfer
  • 6.2.2 Mass Transfer
  • 6.3 Laminar and Turbulent Flow
  • 6.3.1 Laminar and Turbulent Velocity Boundary Layers
  • 6.3.2 Laminar and Turbulent Thermal and Species Concentration Boundary Layers
  • 6.4 The Boundary Layer Equations
  • 6.4.1 Boundary Layer Equations for Laminar Flow
  • 6.4.2 Compressible Flow
  • 6.5 Boundary Layer Similarity: The Normalized Boundary Layer Equations
  • 6.5.1 Boundary Layer Similarity Parameters
  • 6.5.2 Dependent Dimensionless Parameters
  • 6.6 Physical Interpretation of the Dimensionless Parameters
  • 6.7 Boundary Layer Analogies
  • 6.7.1 The Heat and Mass Transfer Analogy
  • 6.7.2 Evaporative Cooling
  • 6.7.3 The Reynolds Analogy
  • 6.8 Summary
  • References
  • Problems
  • Chapter 7 External Flow
  • 7.1 The Empirical Method
  • 7.2 The Flat Plate in Parallel Flow
  • 7.2.1 Laminar Flow over an Isothermal Plate: A Similarity Solution
  • 7.2.2 Turbulent Flow over an Isothermal Plate
  • 7.2.3 Mixed Boundary Layer Conditions
  • 7.2.4 Unheated Starting Length
  • 7.2.5 Flat Plates with Constant Heat Flux Conditions
  • 7.2.6 Limitations on Use of Convection Coefficients
  • 7.3 Methodology for a Convection Calculation
  • 7.4 The Cylinder in Cross Flow
  • 7.4.1 Flow Considerations
  • 7.4.2 Convection Heat and Mass Transfer
  • 7.5 The Sphere
  • 7.6 Flow Across Banks of Tubes
  • 7.7 Impinging Jets
  • 7.7.1 Hydrodynamic and Geometric Considerations
  • 7.7.2 Convection Heat and Mass Transfer
  • 7.8 Packed Beds
  • 7.9 Summary
  • References
  • Problems
  • Chapter 8 Internal Flow
  • 8.1 Hydrodynamic Considerations
  • 8.1.1 Flow Conditions
  • 8.1.2 The Mean Velocity
  • 8.1.3 Velocity Profile in the Fully Developed Region
  • 8.1.4 Pressure Gradient and Friction Factor in Fully Developed Flow
  • 8.2 Thermal Considerations
  • 8.2.1 The Mean Temperature
  • 8.2.2 Newton’s Law of Cooling
  • 8.2.3 Fully Developed Conditions
  • 8.3 The Energy Balance
  • 8.3.1 General Considerations
  • 8.3.2 Constant Surface Heat Flux
  • 8.3.3 Constant Surface Temperature
  • 8.4 Laminar Flow in Circular Tubes: Thermal Analysis and Convection Correlations
  • 8.4.1 The Fully Developed Region
  • 8.4.2 The Entry Region
  • 8.4.3 Temperature-Dependent Properties
  • 8.5 Convection Correlations: Turbulent Flow in Circular Tubes
  • 8.6 Convection Correlations: Noncircular Tubes and the Concentric Tube Annulus
  • 8.7 Heat Transfer Enhancement
  • 8.8 Forced Convection in Small Channels
  • 8.8.1 Microscale Convection in Gases (0.1 µn ≲ Dh ≲ 100 µm)
  • 8.8.2 Microscale Convection in Liquids
  • 8.8.3 Nanoscale Convection (Dh ≲ 100 nm)
  • 8.9 Convection Mass Transfer
  • 8.10 Summary
  • References
  • Problems
  • Chapter 9 Free Convection
  • 9.1 Physical Considerations
  • 9.2 The Governing Equations for Laminar Boundary Layers
  • 9.3 Similarity Considerations
  • 9.4 Laminar Free Convection on a Vertical Surface
  • 9.5 The Effects of Turbulence
  • 9.6 Empirical Correlations: External Free Convection Flows
  • 9.6.1 The Vertical Plate
  • 9.6.2 Inclined and Horizontal Plates
  • 9.6.3 The Long Horizontal Cylinder
  • 9.6.4 Spheres
  • 9.7 Free Convection Within Parallel Plate Channels
  • 9.7.1 Vertical Channels
  • 9.7.2 Inclined Channels
  • 9.8 Empirical Correlations: Enclosures
  • 9.8.1 Rectangular Cavities
  • 9.8.2 Concentric Cylinders
  • 9.8.3 Concentric Spheres
  • 9.9 Combined Free and Forced Convection
  • 9.10 Convection Mass Transfer
  • 9.11 Summary
  • References
  • Problems
  • Chapter 10 Boiling and Condensation
  • 10.1 Dimensionless Parameters in Boiling and Condensation
  • 10.2 Boiling Modes
  • 10.3 Pool Boiling
  • 10.3.1 The Boiling Curve
  • 10.3.2 Modes of Pool Boiling
  • 10.4 Pool Boiling Correlations
  • 10.4.1 Nucleate Pool Boiling
  • 10.4.2 Critical Heat Flux for Nucleate Pool Boiling
  • 10.4.3 Minimum Heat Flux
  • 10.4.4 Film Pool Boiling
  • 10.4.5 Parametric Effects on Pool Boiling
  • 10.5 Forced Convection Boiling
  • 10.5.1 External Forced Convection Boiling
  • 10.5.2 Two-Phase Flow
  • 10.5.3 Two-Phase Flow in Microchannels
  • 10.6 Condensation: Physical Mechanisms
  • 10.7 Laminar Film Condensation on a Vertical Plate
  • 10.8 Turbulent Film Condensation
  • 10.9 Film Condensation on Radial Systems
  • 10.10 Condensation in Horizontal Tubes
  • 10.11 Dropwise Condensation
  • 10.12 Summary
  • References
  • Problems
  • Chapter 11 Heat Exchangers
  • 11.1 Heat Exchanger Types
  • 11.2 The Overall Heat Transfer Coefficient
  • 11.3 Heat Exchanger Analysis: Use of the Log Mean Temperature Difference
  • 11.3.1 The Parallel-Flow Heat Exchanger
  • 11.3.2 The Counterflow Heat Exchanger
  • 11.3.3 Special Operating Conditions
  • 11.4 Heat Exchanger Analysis: The Effectiveness–NTU Method
  • 11.4.1 Definitions
  • 11.4.2 Effectiveness–NTU Relations
  • 11.5 Heat Exchanger Design and Performance Calculations
  • 11.6 Additional Considerations
  • 11.7 Summary
  • References
  • Problems
  • Chapter 12 Radiation: Processes and Properties
  • 12.1 Fundamental Concepts
  • 12.2 Radiation Heat Fluxes
  • 12.3 Radiation Intensity
  • 12.3.1 Mathematical Definitions
  • 12.3.2 Radiation Intensity and Its Relation to Emission
  • 12.3.3 Relation to Irradiation
  • 12.3.4 Relation to Radiosity for an Opaque Surface
  • 12.3.5 Relation to the Net Radiative Flux for an Opaque Surface
  • 12.4 Blackbody Radiation
  • 12.4.1 The Planck Distribution
  • 12.4.2 Wien’s Displacement Law
  • 12.4.3 The Stefan–Boltzmann Law
  • 12.4.4 Band Emission
  • 12.5 Emission from Real Surfaces
  • 12.6 Absorption, Reflection, and Transmission by Real Surfaces
  • 12.6.1 Absorptivity
  • 12.6.2 Reflectivity
  • 12.6.3 Transmissivity
  • 12.6.4 Special Considerations
  • 12.7 Kirchhoff’s Law
  • 12.8 The Gray Surface
  • 12.9 Environmental Radiation
  • 12.9.1 Solar Radiation
  • 12.9.2 The Atmospheric Radiation Balance
  • 12.9.3 Terrestrial Solar Irradiation
  • 12.10 Summary
  • References
  • Problems
  • Chapter 13 Radiation Exchange Between Surfaces
  • 13.1 The View Factor
  • 13.1.1 The View Factor Integral
  • 13.1.2 View Factor Relations
  • 13.2 Blackbody Radiation Exchange
  • 13.3 Radiation Exchange Between Opaque, Diffuse, Gray Surfaces in an Enclosure
  • 13.3.1 Net Radiation Exchange at a Surface
  • 13.3.2 Radiation Exchange Between Surfaces
  • 13.3.3 The Two-Surface Enclosure
  • 13.3.4 Two-Surface Enclosures in Series and Radiation Shields
  • 13.3.5 The Reradiating Surface
  • 13.4 Multimode Heat Transfer
  • 13.5 Implications of the Simplifying Assumptions
  • 13.6 Radiation Exchange with Participating Media
  • 13.6.1 Volumetric Absorption
  • 13.6.2 Gaseous Emission and Absorption
  • 13.7 Summary
  • References
  • Problems
  • Chapter 14 Diffusion Mass Transfer
  • 14.1 Physical Origins and Rate Equations
  • 14.1.1 Physical Origins
  • 14.1.2 Mixture Composition
  • 14.1.3 Fick’s Law of Diffusion
  • 14.1.4 Mass Diffusivity
  • 14.2 Mass Transfer in Nonstationary Media
  • 14.2.1 Absolute and Diffusive Species Fluxes
  • 14.2.2 Evaporation in a Column
  • 14.3 The Stationary Medium Approximation
  • 14.4 Conservation of Species for a Stationary Medium
  • 14.4.1 Conservation of Species for a Control Volume
  • 14.4.2 The Mass Diffusion Equation
  • 14.4.3 Stationary Media with Specified Surface Concentrations
  • 14.5 Boundary Conditions and Discontinuous Concentrations at Interfaces
  • 14.5.1 Evaporation and Sublimation
  • 14.5.2 Solubility of Gases in Liquids and Solids
  • 14.5.3 Catalytic Surface Reactions
  • 14.6 Mass Diffusion with Homogeneous Chemical Reactions
  • 14.7 Transient Diffusion
  • 14.8 Summary
  • References
  • Problems
  • Appendix A Thermophysical Properties of Matter
  • Appendix B Mathematical Relations and Functions
  • Appendix C Thermal Conditions Associated with Uniform Energy Generation in One-Dimensional, Steady-State Systems
  • Appendix D The Gauss-Seidel Method
  • Appendix E The Convection Transfer Equations
  • E.1 Conservation of Mass
  • E.2 Newton’s Second Law of Motion
  • E.3 Conservation of Energy
  • E.4 Conservation of Species
  • Appendix F Boundary Layer Equations for Turbulent Flow
  • Appendix G An Integral Laminar Boundary Layer Solution for Parallel Flow over a Flat Plate
  • Conversion Factors
  • Physical Constants
  • Supplement
  • 4S.1 The Graphical Method
  • 4S.1.1 Methodology of Constructing a Flux Plot
  • 4S.1.2 Determination of the Heat Transfer Rate
  • 4S.1.3 The Conduction Shape Factor
  • 4S.2 The Gauss-Seidel Method: Example of Usage
  • References
  • Problems
  • 5S.1 Graphical Representation of One-Dimensional, Transient Conduction in the Plane Wall, Long Cylinder, and Sphere
  • 5S.2 Analytical Solutions of Multidimensional Effects
  • References
  • Problems
  • 6S.1 Derivation of the Convection Transfer Equations
  • 6S.1.1 Conservation of Mass
  • 6S.1.2 Newton’s Second Law of Motion
  • 6S.1.3 Conservation of Energy
  • 6S.1.4 Conservation of Species
  • References
  • Problems
  • 11S.1 Log Mean Temperature Difference Method for Multipass and Cross-Flow Heat Exchangers
  • 11S.2 Compact Heat Exchangers
  • References
  • Problems
  • Index
  • EULA
Show More

Additional information

Veldu vöru

Leiga á rafbók í 150 daga, Rafbók til eignar

Aðrar vörur

0
    0
    Karfan þín
    Karfan þín er tómAftur í búð