Introduction to Coastal Engineering and Management

Höfundur J William Kamphuis

Útgefandi World Scientific Publishing

Snið Page Fidelity

Print ISBN 9789810244170

Útgáfa 0

Útgáfuár

5.190 kr.

Description

Efnisyfirlit

  • Contents
  • Preface
  • Notation
  • 1. Introduction
  • 1.1 Introduction
  • 1.2 Synthesis
  • 1.3 Simplification
  • 1.4 Systems
  • 1.5 Jargon and Terminology
  • 1.6 Engineering Time
  • 1.7 Handy References
  • 1.8 Data Requirements
  • 1.9 Coastal Design
  • 1.10 Concluding Remarks
  • 2. Water Waves
  • 2.1 Introduction
  • 2.1.1 Description of Waves
  • 2.1.2 Wind and Waves
  • 2.1.3 Sea and Swell
  • 2.1.4 Introduction of Small Amplitude Theory Wave
  • 2.2 Wave Theories
  • 2.3 Small Amplitude Wave Theory
  • 2.3.1 Wave Tables
  • 2.3.2 Small Amplitude Expressions
  • 2.3.3 Calculation by Computer
  • 2.4 Reflected Waves
  • 2.5 Wave Measurement
  • 2.5.1 Wave Direction
  • 2.5.2 Equipment
  • 2.5.3 Laboratory Sensors
  • 2.6 Summary
  • 3. Short-Term Wave Analysis
  • 3.1 Introduction
  • 3.2 Short-Term Wave Height Distribution
  • 3.3 Wave Period Distribution
  • 3.4 Time Domain Analysis of a Wave Record
  • 3.5 Frequency Domain Analysis of a Wave Record
  • 3.6 Parameters Derived from the Wave Spectrum
  • 3.7 Uncertainties in Wave Measurements
  • 3.8 Common Parametric Expressions for Wave Spectra
  • 3.8 Directional Wave Spectra
  • 4. Long-Term Wave Analysis
  • 4.1 Introduction
  • 4.2 Statistical Analysis of Grouped Wave Data
  • 4.3 Transformation of Coordinate Axes
  • 4.3.1 Normal Probability Distribution
  • 4.3.2 Log-Normal Probability Distribution
  • 4.3.3 Gumbel Distribution
  • 4.3.4 Weibull Distribution
  • 4.4 Extrapolation
  • 4.5 Sensitivity to Distribution and Threshold Wave Height
  • 4.6 Extreme Value Analysis From Ordered Data
  • 4.7 Conclusions About Wave Heights
  • 4.8 Other Long-Term Wave Distributions
  • 5. Wave Generation
  • 5.1 Wave Generation
  • 5.2 Simple Wave Hindcasting
  • 5.2.1 Introduction to Parametric Methods
  • 5.2.2 Wind
  • 5.2.3 Jonswap Parameters
  • 5.2.4 Maximum Wave Conditions
  • 5.2.5 Finite Water Depth
  • 5.3 Hindcast Models
  • 5.3.1 Parametric Models
  • 5.3.2 Wave Spectra Models
  • 5.3.3 More Complex Hindcasting Models
  • 5.4 Uncertainty
  • 6. Tides and Water Levels
  • 6.1 Introduction
  • 6.2 Tides
  • 6.2.1 Equilibrium Tide (Moon)
  • 6.2.2 Equilibrium Tide (Sun and Moon)
  • 6.2.3 Daily Inequality
  • 6.2.4 Other Effects
  • 6.2.5 Tide Analysis and Prediction
  • 6.2.6 Tidal Currents
  • 6.2.7 Stratification and Density Currents
  • 6.2.8 Tidal Computation
  • 6.3 Storm Surge
  • 6.4 Barometric Surge
  • 6.5 Seiche
  • 6.6 Seasonal Fluctuations
  • 6.7 Long-Term Water Level Changes
  • 6.7.1 Climatic Fluctuations
  • 6.7.2 Eustatic (Sea) Level Change
  • 6.7.3 Isostatic (Land) Rebound and Subsidence
  • 6.7.4 Global Climate Change
  • 7. Wave Transformation and Breaking
  • 7.1 Wave Transformation Equations
  • 7.2 Wave Shoaling
  • 7.3 Wave Refraction
  • 7.3.1 The Equations
  • 7.3.2 Refraction Diagrams
  • 7.3.3 Snell’s Law
  • 7.3.4 Summary
  • 7.4 Wave Breaking
  • 7.5 Wave Diffraction
  • 7.6 Uncertainty
  • 8. Design of Structures
  • 8.1 Introduction
  • 8.2 Basics of Risk Analysis
  • 8.2.1 Introduction
  • 8.2.2 Probability of Failure
  • 8.2.3 Levels Of Probabilistic Design
  • 8.3 Level II Demonstration
  • 8.3.1 Equations
  • 8.3.2 Two Probability Distributions
  • 8.3.3 One Single Distribution
  • 8.3.4 Example Calculations
  • 8.4 Extension to More Complex Designs
  • 8.5 Encounter Probability
  • 8.6 Level I Design
  • 8.7 Risk and Damage
  • 8.8 The Design Wave
  • 8.8.1 Wave Statistics
  • 8.8.2 Equivalence of Design Wave Height and Failure Probability
  • 8.8.3 Offshore Design Wave Height
  • 8.8.4 Design Wave Height for Non-Breaking Waves
  • 8.8.5 Design Wave Height for Breaking Waves
  • 8.8.6 Model Study
  • 8.9 Water Levels
  • 9. Breakwaters
  • 9.1 Vertical Breakwaters
  • 9.1.1 Introduction
  • 9.1.2 Forces for Non-Breaking Waves
  • 9.1.3 Forces for Breaking Waves
  • 9.1.4 Stability Design
  • 9.1.5 Geotechnical Stability
  • 9.1.6 Other Design Considerations
  • 9.2 Design Examples
  • 9.2.1 Vertical Breakwater in 12 m of Water with a Short Fetch
  • 9.2.2 Vertical Breakwater in 12 m of Water on an Open Coast
  • 9.2.3 Vertical Breakwater in 3 m of Water
  • 9.2.4 Summary
  • 9.3 Rubble Mound Breakwaters
  • 9.3.1 Filter Characteristics
  • 9.3.2 Rock Armor
  • 9.3.3 Concrete Armor
  • 9.3.4 Armor Unit Density
  • 9.3.5 Primary Armor Layer
  • 9.3.6 Breakwater Crest
  • 9.4 Design Examples
  • 9.4.1 Breakwater in 12 m of Water
  • 9.4.2 Breakwater in 3 m of Water
  • 9.4 Berm Breakwaters
  • 10. Introduction to Coastal Management
  • 10.1 Introduction
  • 10.2 The Coast under Pressure
  • 10.3 Conforming Use
  • 10.4 Conflict and Compatibility
  • 10.5 Management Strategies
  • 10.6 Coastal Management in Spite of the Odds
  • 10.7 Management of Coastal Lands
  • 10.8 Management of Coastal Waters
  • 10.8.1 Groundwater
  • 10.8.2 Waste Water
  • 10.8.3 Other Forms of Pollution
  • 10.9 Example: Management of the Great Lakes – St Lawrence Shoreline
  • 10.10 Example: Management of Coastal Ecosystems
  • 10.11 Concluding Remarks
  • 11. Coastal Sediment Transport
  • 11.1 Introduction
  • 11.2 Dynamic Beach Profile
  • 11.3 Cross-shore Transport
  • 11.3.1 Dune-Beach Utopia
  • 11.2.3 Dune-Beach Disturbance
  • 11.3.3 Dune-Beach Encouragement
  • 11.3.4 Soft Protection
  • 11.4 Alongshore Transport
  • 11.4.1 The Process
  • 11.4.2 Measurement of Littoral Transport
  • 11.4.3 Computation of Littoral Transport
  • 11.5 Complications
  • 11.5.1 Limited Amounts of Beach Material
  • 11.5.2 Sediment Transport in Two Directions
  • 11.5.3 Short Term Littoral Transport
  • 11.6 Cohesive Shores
  • 12. Basic Shore Processes
  • 12.1 Introduction
  • 12.2 Nearshore Current Patterns
  • 12.3 Littoral Materials
  • 12.4 The Beach
  • 12.4.1 Beach Slope
  • 12.4.2 Beach Profile
  • 12.5 Cross Shore Sediment Transport
  • 12.6 Alongshore Sediment Transport Rate
  • 12.6.1 Alongshore Component of Wave Power
  • 12.6.2 CERC Expression
  • 12.6.3 Kamphuis (1991) Expression
  • 12.7 Actual Alongshore Sediment Transport Rate
  • 12.8 The Littoral Cell
  • 12.9 Uncertainty
  • 13. Coastal Design
  • 13.1 Introduction
  • 13.2 Model Classification
  • 13.2.1 Time-Space Classification
  • 13.2.2 Classification by Purpose
  • 13.3 Physical Models
  • 13.3.1 General
  • 13.3.2 Scaling and Scale Effect
  • 13.3.3 Laboratory Effect
  • 13.3.4 Implications for Physical Modeling
  • 13.4 Numerical Modeling
  • 13.4.1 General
  • 13.4.2 Simplifications of Three Dimensional Models
  • 13.4.3 One Dimensional Models and their Extensions
  • 13.4.4 Performance of Coastal Models
  • 13.5 Field Measurement and Data Models
  • 13.6 Uncertainty
  • 13.7 Reducing Uncertainty
  • 13.8 Model Interpretation
  • 13.9 The Future
  • 13.10 Composite Modeling
  • 13.11 Summary
  • 14. One-Dimensional Modeling of Coastal Morphology
  • 14.1 Introduction
  • 14.2 The 1-D Morphology Equation
  • 14.3 Sediment Transport Rate
  • 14.3.1 Potential Sediment Transport Rate
  • 14.3.2 Actual Sediment Transport Rate
  • 14.4 Wave Transformation Computation
  • 14.4.1 Wave Shoaling, Refraction and Breaking
  • 14.4.2 Wave Diffraction
  • 14.5 Analytical Computation of Shore Morphology
  • 14.5.1 Simplifications and Assumptions
  • 14.5.2 Complete Barrier Solution
  • 14.5.3 Bypassing Barrier Solution
  • 14.6 Numerical Solutions
  • 14.6.1 Basics
  • 14.6.2 Implicit Finite Difference Scheme
  • 14.6.3 Boundary Conditions
  • 14.6.4 Beach Slope
  • 14.6.5 Large Shoreline Curvatures
  • 14.6.6 Summary
  • 14.7 Examples of ONELINE
  • 14.8 Examples of NLINE
  • 15. Shore Protection
  • 15.1 Introduction
  • 15.2 Sediment Movement
  • 15.3 Groins
  • 15.4 Seawalls
  • 15.5 Headlands
  • 15.6 Offshore Breakwaters
  • 15.7 Artificial Nourishment
  • 15.8 Water Levels
  • 16. Problems
  • 16.1 Introduction
  • Problem 1.1 Preparation
  • Problem 1.2 Proposal
  • 16.2 Water Waves
  • Problem 2.1 Basic Wave Calculations
  • Problem 2.2 Wave Reflection
  • 16.3 Short-Term wave Analysis
  • Problem 3.1 Analysis of Fig 3.4
  • Problem 3.2 Analysis of Collected Wave Data
  • Problem 3.3 Rayleigh Distribution
  • Problem 3.4 Zero Crossing Analysis
  • Problem 3.5 Wave Spectrum
  • Problem 3.6 Laboratory Record
  • 16.4 Long-Term Wave Analysis
  • Problem 4.1 Station 13 Data
  • Problem 4.2 North Sea Wave Climate
  • Problem 4.3 Gulf of St. Lawrence Climate
  • Problem 4.4 50-year Storm
  • 16.5 Wave Hindcasting
  • Problem 5.1 Very Simple Wave Hindcast
  • Problem 5.2 Simple Wave Hindcast
  • Problem 5.3 WAVGEN and Shallow Water
  • 16.6 Storm Surge
  • Problem 6.1 Storm Surge at Reeds Bay
  • Problem 6.2 Storm Surge and Waves
  • Problem 6.3 Storm Surge and Waves at Site S
  • 16.7 Wave Transformation
  • Problem 7.1 Wave Refraction and Breaking
  • Problem 7.2 Wave Transformation
  • Problem 7.3 Wave Diffraction
  • 16.8 Design
  • Problem 8.1 Probability of Failure
  • Problem 8.2 Vertical Breakwater
  • Problem 8.3 Vertical Breakwater at Site M
  • Problem 8.4 Vertical loading dock on Gulf of St. Lawrence
  • Problem 8.5 Rubble Mound Breakwater
  • Problem 8.6 Rubble Mound Breakwater at Site M
  • 16.9 Coastal Management
  • Problem 9.1 Expansion at Site M
  • Problem 9.2 Facilities at Site B
  • Problem 9.3 Development of Property
  • 16.10 Sediment Transport and Morphology
  • Problem 10.1 Potential Sediment Transport Rate
  • Problem 10.2 Potential Sediment Transport Rate
  • Problem 10.3 Accretion
  • Problem 10.4 Sediment Transport in two Directions
  • Problem 10.5 Sea Level Rise
  • Problem 10.6 Northeaster Storm
  • 16.11 Modeling
  • Problem 11.1 Physical Models
  • Problem 11.2 Numerical Models
  • 16.12 Comprehensive Problems
  • Problem 12.1 Design Analysis
  • Problem 12.2 Design of Breakwater with Parapet Wall
  • Problem 12.3 Vertical Breakwater Design
  • References
  • Author Index
  • Subject Index
Show More

Additional information

Veldu vöru

Rafbók til eignar

Aðrar vörur

0
    0
    Karfan þín
    Karfan þín er tómAftur í búð