Introduction to Coastal Engineering and Management

Höfundur J William Kamphuis

Útgefandi World Scientific Publishing

Snið ePub

Print ISBN 9789811207990

Útgáfa 3

Útgáfuár 2020

5.690 kr.

Description

Efnisyfirlit

  • Cover page
  • Title page
  • Copyright
  • Dedication
  • Preface to 3rd Edition
  • Preface to 2nd Edition
  • Preface to 1st Edition
  • Contents
  • Notation
  • Chapter 1. Introduction
  • 1.1 Introduction
  • 1.2 Synthesis
  • 1.3 Simplification
  • 1.4 Systems
  • 1.5 Jargon and Terminology
  • 1.6 Engineering Time
  • 1.7 Handy References
  • 1.8 Data Requirements
  • 1.9 Coastal Design
  • 1.10 Concluding Remarks
  • Chapter 2. Water Waves
  • 2.1 Introduction
  • 2.1.1 Description of waves
  • 2.1.2 Wind and waves
  • 2.1.3 Sea and swell
  • 2.1.4 Introduction to small amplitude wave theory
  • 2.2 Wave Theories
  • 2.3 Small Amplitude Wave Theory
  • 2.3.1 Wave tables
  • 2.3.2 Small amplitude expressions
  • 2.3.3 Calculation by computer
  • 2.4 Reflected Waves
  • 2.5 Wave Measurement
  • 2.5.1 Wave direction
  • 2.5.2 Equipment
  • 2.5.3 Laboratory sensors
  • 2.6 Summary
  • Chapter 3. Short-Term Wave Analysis
  • 3.1 Introduction
  • 3.2 Short-Term Wave Height Distribution
  • 3.3 Wave Period Distribution
  • 3.4 Time Domain Analysis of a Wave Record
  • 3.5 Frequency Domain Analysis of a Wave Record
  • 3.6 Parameters Derived from the Wave Spectrum
  • 3.7 Uncertainties in Wave Measurements
  • 3.8 Common Parametric Expressions for Wave Spectra
  • 3.9 Directional Wave Spectra
  • Chapter 4. Long-Term Wave Analysis
  • 4.1 Introduction
  • 4.2 Statistical Analysis of Grouped Wave Data
  • 4.3 Transformation of Coordinate Axes
  • 4.3.1 Normal probability distribution
  • 4.3.2 Log-normal probability distribution
  • 4.3.3 Gumbel distribution
  • 4.3.4 Weibull distribution
  • 4.4 Extrapolation
  • 4.5 Sensitivity to Distribution and Threshold Wave Height
  • 4.6 Extreme Value Analysis from Ordered Data
  • 4.7 Conclusions about Wave Heights
  • 4.8 Other Long-Term Wave Distributions
  • Chapter 5. Wave Generation
  • 5.1 Wave Generation
  • 5.2 Simple Wave Hindcasting
  • 5.2.1 Introduction to parametric methods
  • 5.2.2 Wind
  • 5.2.3 Jonswap parameters
  • 5.2.4 Maximum wave conditions
  • 5.2.5 Finite water depth
  • 5.3 Hindcast Models
  • 5.3.1 Parametric models
  • 5.3.2 Wave spectra models
  • 5.3.3 More complex hindcasting models
  • 5.4 Uncertainty
  • Chapter 6. Wave Transformation and Breaking
  • 6.1 Wave Transformation Equations
  • 6.2 Wave Shoaling
  • 6.3 Wave Refraction
  • 6.3.1 The equations
  • 6.3.2 Refraction diagrams
  • 6.3.3 Snell’s law
  • 6.3.4 Summary
  • 6.4 Wave Breaking
  • 6.5 Wave Diffraction
  • 6.6 Uncertainty
  • Chapter 7. Tides and Water Levels
  • 7.1 Introduction
  • 7.2 Tides
  • 7.2.1 Equilibrium tide (Moon)
  • 7.2.2 Equilibrium tide (Sun and Moon)
  • 7.2.3 Daily inequality
  • 7.2.4 Other effects
  • 7.2.5 Tide analysis and prediction
  • 7.2.6 Tidal propagation
  • 7.2.7 Tidal currents
  • 7.2.8 Stratification and density currents
  • 7.2.9 Tidal computation
  • 7.3 Storm Surge
  • 7.4 Barometric Surge
  • 7.5 Seiche
  • 7.6 Seasonal Fluctuations
  • 7.7 Long-Term Water Level Changes
  • 7.7.1 Climatic fluctuations
  • 7.7.2 Eustatic (Sea) level change
  • 7.7.3 Isostatic (Land) rebound and subsidence
  • 7.7.4 Global climate change
  • Chapter 8. Rare Extraneous Events
  • 8.1 Introduction
  • 8.2 Cyclone-Generated Storm Surge
  • 8.2.1 Hurricane Katrina at New Orleans
  • 8.3 Tsunamis
  • 8.3.1 Tsunamis generated by earthquakes
  • 8.3.2 Tsunamis generated by landslides
  • 8.4 Transformation and Breaking of Long Waves
  • Chapter 9. Design of Structures
  • 9.1 Introduction
  • 9.2 Basics of Probabilistic Design
  • 9.2.1 Introduction
  • 9.2.2 Probability of failure
  • 9.2.3 Levels of probabilistic design
  • 9.3 Level II Demonstration
  • 9.3.1 Equations
  • 9.3.2 Two probability distributions
  • 9.3.3 One single distribution
  • 9.3.4 Example calculations
  • 9.4 Extension to More Complex Designs
  • 9.5 Encounter Probability
  • 9.6 Level I Design
  • 9.7 Risk and Damage
  • 9.8 The Design Wave
  • 9.8.1 Wave statistics
  • 9.8.2 Equivalence of design wave height and failure probability
  • 9.8.3 Offshore design wave height
  • 9.8.4 Design wave height for non-breaking waves
  • 9.8.5 Design wave height for breaking waves
  • 9.8.6 Model study
  • 9.9 Water Levels
  • Chapter 10. Breakwaters
  • 10.1 Vertical Breakwaters
  • 10.1.1 Introduction
  • 10.1.2 Forces for non-breaking waves
  • 10.1.3 Forces for breaking waves
  • 10.1.4 Stability design
  • 10.1.5 Geotechnical stability
  • 10.1.6 Other design considerations
  • 10.2 Design Examples3
  • 10.2.1 Vertical breakwater in 12 m of water with a short fetch
  • 10.2.2 Vertical breakwater in 12 m of water on an open coast
  • 10.2.3 Vertical breakwater in 3 m of water
  • 10.2.4 Summary
  • 10.3 Rubble Mound Breakwaters
  • 10.3.1 Filter characteristics
  • 10.3.2 Rock armor
  • 10.3.3 Concrete armor
  • 10.3.4 Armor unit density
  • 10.3.5 Primary armor layer
  • 10.3.6 Breakwater crest
  • 10.4 Design Examples
  • 10.4.1 Breakwater in 12 m of water
  • 10.4.2 Breakwater in 3 m of water
  • 10.5 Berm Breakwaters
  • Chapter 11. Introduction to Coastal Management
  • 11.1 Introduction
  • 11.2 Decision Making
  • 11.3 The Coast under Pressure
  • 11.4 Conforming Use
  • 11.5 Conflict and Compatibility
  • 11.6 Management Strategies
  • 11.7 Coastal Management in Spite of the Odds
  • 11.8 Management of Coastal Lands
  • 11.9 Management of Coastal Waters
  • 11.9.1 Groundwater
  • 11.9.2 Waste water
  • 11.9.3 Other forms of pollution
  • 11.10 Example: Management of the Great Lakes–St. Lawrence Shoreline
  • 11.11 Example: Management of Coastal Ecosystems
  • 11.12 Concluding Remarks
  • Chapter 12. Coastal Sediment Transport
  • 12.1 Introduction
  • 12.2 Dynamic Beach Profile
  • 12.3 Cross-Shore Transport
  • 12.3.1 Dune-Beach Utopia
  • 12.3.2 Dune-Beach disturbance
  • 12.3.3 Dune-Beach encouragement
  • 12.3.4 Soft protection
  • 12.4 Alongshore Sediment Transport
  • 12.4.1 The process
  • 12.4.2 Measurement of littoral transport
  • 12.4.3 Computation of littoral transport
  • 12.5 Complications
  • 12.5.1 Limited amounts of beach material
  • 12.5.2 Sediment transport in two directions
  • 12.5.3 Short term littoral transport
  • 12.6 Cohesive shores
  • Chapter 13. Basic Shore Processes
  • 13.1 Introduction
  • 13.2 Nearshore Current Patterns
  • 13.3 Littoral Materials
  • 13.4 The Beach
  • 13.4.1 Beach slope
  • 13.4.2 Beach profile
  • 13.5 Cross Shore Sediment Transport
  • 13.6 Alongshore Sediment Transport Rate
  • 13.6.1 Alongshore component of wave power
  • 13.6.2 CERC expression
  • 13.6.3 Kamphuis (1991) expression
  • 13.7 Actual Alongshore Sediment Transport Rate
  • 13.8 The Littoral Cell
  • 13.9 Uncertainty
  • Chapter 14. Coastal Design
  • 14.1 Introduction
  • 14.2 Model Classification
  • 14.2.1 Time-space classification
  • 14.2.2 Classification by purpose
  • 14.3 Physical Models
  • 14.3.1 General
  • 14.3.2 Scaling and scale effect
  • 14.3.3 Laboratory effect
  • 14.3.4 Implications for physical modeling
  • 14.4 Numerical Modeling
  • 14.4.1 General
  • 14.4.2 Simplifications of three-dimensional models
  • 14.4.3 One-dimensional models and their extensions
  • 14.4.4 Performance of coastal models
  • 14.5 Field Measurement and Data Models
  • 14.6 Uncertainty
  • 14.7 Reducing Uncertainty
  • 14.8 Model Interpretation
  • 14.9 The Future
  • 14.10 Composite Modeling
  • 14.11 Summary
  • Chapter 15. One-Dimensional Modeling of Coastal Morphology
  • 15.1 Introduction
  • 15.2 The 1-D Morphology Equation
  • 15.3 Sediment Transport Rate
  • 15.3.1 Potential sediment transport rate
  • 15.3.2 Actual sediment transport rate
  • 15.4 Wave Transformation Computation
  • 15.4.1 Wave shoaling, refraction and breaking
  • 15.4.2 Wave diffraction
  • 15.5 Analytical Computation of Shore Morphology
  • 15.5.1 Simplifications and assumptions
  • 15.5.2 Complete barrier solution
  • 15.5.3 Bypassing barrier solution
  • 15.6 Numerical Solutions
  • 15.6.1 Basics
  • 15.6.2 Implicit finite difference scheme
  • 15.6.3 Boundary conditions
  • 15.6.4 Beach slope
  • 15.6.5 Large shoreline curvatures
  • 15.6.6 Summary
  • 15.7 Examples of ONELINE
  • 15.8 Examples of NLINE
  • Chapter 16. Shore Protection
  • 16.1 Introduction
  • 16.2 Sediment Movement
  • 16.3 Groins
  • 16.4 Seawalls
  • 16.5 Headlands
  • 16.6 Offshore Breakwaters
  • 16.7 Artificial Nourishment
  • 16.8 Concluding Remarks
  • Chapter 17. Contemporary Concepts
  • 17.1 Introduction
  • 17.2 Decision Making
  • 17.3 Contemporary Coastal System Design
  • 17.4 Contemporary Decision Making
  • 17.5 Failure, Mitigation and Adaptation
  • 17.6 Risk and Minimum Cost
  • 17.7 Resilience
  • 17.7.1 Introduction of resilience
  • 17.7.2 Level 1 — Design of a resilient PES
  • 17.8 Uncertainty
  • Chapter 18. Climate, Climate Change and Climate Change Impacts
  • 18.1 Essentials of Climate Change
  • 18.2 Two Examples of Climate Change Impacts
  • 18.2.1 Increased sea levels
  • 18.2.2 Change in ocean circulation
  • 18.3 Notes to Finish ‘Essentials of Climate Change’
  • 18.4 From the Past to the Present or from Certainty to Uncertainty
  • 18.5 The Future or What Should We Do Now
  • 18.5.1 Time frames
  • 18.5.2 Urgency and calamity
  • 18.5.3 Coastal engineering teaching and research
  • Chapter 19. Problems
  • 19.1 Introduction
  • 19.2 Water Waves
  • 19.3 Short-Term Wave Analysis
  • 19.4 Long-Term Wave Analysis
  • 19.5 Wave Hindcasting
  • 19.6 Wave Transformation
  • 19.7 Storm Surge and Extraneous Events
  • 19.8 Design
  • 19.9 Coastal Management
  • 19.10 Sediment Transport and Morphology
  • 19.11 Modeling
  • 19.12 Shore Protection
  • 19.13 Contemporary Decision Making
  • 19.14 Comprehensive Problems
  • References
  • Author Index
  • Subject Index
Show More

Additional information

Veldu vöru

Rafbók til eignar

Aðrar vörur

0
    0
    Karfan þín
    Karfan þín er tómAftur í búð