Introduction to Coastal Engineering and Management

Höfundur J William Kamphuis

Útgefandi World Scientific Publishing

Snið ePub

Print ISBN 9789812834843

Útgáfa 2

Útgáfuár 2010

5.690 kr.

Description

Efnisyfirlit

  • Cover Page
  • Title Page
  • Copyright Page
  • Dedication Page
  • Preface to 2nd Edition
  • Preface to 1st Edition
  • Contents
  • Notation
  • 1. Introduction
  • 1.1 Introduction
  • 1.2 Synthesis
  • 1.3 Simplification
  • 1.4 Systems
  • 1.5 Jargon and Terminology
  • 1.6 Engineering Time
  • 1.7 Handy References
  • 1.8 Data Requirements
  • 1.9 Coastal Design
  • 1.10 Concluding Remarks
  • 2. Water Waves
  • 2.1 Introduction
  • 2.1.1 Description of Waves
  • 2.1.2 Wind and Waves
  • 2.1.3 Sea and Swell
  • 2.1.4 Introduction to Small Amplitude Wave Theory
  • 2.2 Wave Theories
  • 2.3 Small Amplitude Wave Theory
  • 2.3.1 Wave Tables
  • 2.3.2 Small Amplitude Expressions
  • 2.3.3 Calculation by Computer
  • 2.4 Reflected Waves
  • 2.5 Wave Measurement
  • 2.5.1 Wave Direction
  • 2.5.2 Equipment
  • 2.5.3 Laboratory Sensors
  • 2.6 Summary
  • 3. Short-Term Wave Analysis
  • 3.1 Introduction
  • 3.2. Short-Term Wave Height Distribution
  • 3.3 Wave Period Distribution
  • 3.4 Time Domain Analysis of a Wave Record
  • 3.5 Frequency Domain Analysis of a Wave Record
  • 3.6 Parameters Derived from the Wave Spectrum
  • 3.7 Uncertainties in Wave Measurements
  • 3.8 Common Parametric Expressions for Wave Spectra
  • 3.9 Directional Wave Spectra
  • 4. Long-Term Wave Analysis
  • 4.1. Introduction
  • 4.2 Statistical Analysis of Grouped Wave Data
  • 4.3 Transformation of Coordinate Axes
  • 4.3.1 Normal Probability Distribution
  • 4.3.2 Log-Normal Probability Distribution
  • 4.3.3 Gumbel Distribution
  • 4.3.4 Weibull Distribution
  • 4.4 Extrapolation
  • 4.5 Sensitivity to Distribution and Threshold Wave Height
  • 4.6. Extreme Value Analysis from Ordered Data
  • 4.7. Conclusions About Wave Heights
  • 4.8. Other Long-Term Wave Distributions
  • 5. Wave Generation
  • 5.1 Wave Generation
  • 5.2 Simple Wave Hindcasting
  • 5.2.1 Introduction to Parametric Methods
  • 5.2.2 Wind
  • 5.2.3 Jonswap Parameters
  • 5.2.4 Maximum Wave Conditions
  • 5.2.5 Finite Water Depth
  • 5.3 Hindcast Models
  • 5.3.1 Parametric Models
  • 5.3.2 Wave Spectra Models
  • 5.3.3 More Complex Hindcasting Models
  • 5.4 Uncertainty
  • 6. Wave Transformation and Breaking
  • 6.1 Wave Transformation Equations
  • 6.2 Wave Shoaling
  • 6.3 Wave Refraction
  • 6.3.1 The Equations
  • 6.3.2 Refraction Diagrams
  • 6.3.3 Snell’s Law
  • 6.3.4 Summary
  • 6.4. Wave Breaking
  • 6.5. Wave Diffraction
  • 6.6. Uncertainty
  • 7. Tides and Water Levels
  • 7.1 Introduction
  • 7.2 Tides
  • 7.2.1 Equilibrium Tide (Moon)
  • 7.2.2 Equilibrium Tide (Sun and Moon)
  • 7.2.3 Daily Inequality
  • 7.2.4 Other Effects
  • 7.2.5 Tide Analysis and Prediction
  • 7.2.6 Tidal Propagation
  • 7.2.7 Tidal Currents
  • 7.2.8 Stratification and Density Currents
  • 7.2.9 Tidal Computation
  • 7.3 Storm Surge
  • 7.4 Barometric Surge
  • 7.5 Seiche
  • 7.6 Seasonal Fluctuations
  • 7.7 Long-Term Water Level Changes
  • 7.7.1 Climatic Fluctuations
  • 7.7.2 Eustatic (Sea) Level Change
  • 7.7.3 Isostatic (Land) Rebound and Subsidence
  • 7.7.4 Global Climate Change
  • 8. Rare Extraneous Events
  • 8.1 Introduction
  • 8.2 Cyclone-Generated Storm Surge
  • 8.2.1 Hurricane Katrina at New Orleans
  • 8.3 Tsunamis
  • 8.3.1 Tsunamis Generated by Earthquakes
  • 8.3.2 Tsunamis Generated by Landslides
  • 8.4 Transformation and Breaking of Long Waves
  • 9. Design of Structures
  • 9.1 Introduction
  • 9.2 Basics of Probabilistic Design
  • 9.2.1 Introduction
  • 9.2.2 Probability of Failure
  • 9.2.3 Levels of Probabilistic Design
  • 9.3 Level II Demonstration
  • 9.3.1 Equations
  • 9.3.2 Two Probability Distributions
  • 9.3.3 One Single Distribution
  • 9.3.4 Example Calculations
  • 9.4 Extension to More Complex Designs
  • 9.5 Encounter Probability
  • 9.6 Level I Design
  • 9.7 Risk and Damage
  • 9.8 The Design Wave
  • 9.8.1 Wave Statistics
  • 9.8.2 Equivalence of Design Wave Height and Failure Probability
  • 9.8.3 Offshore Design Wave Height
  • 9.8.4 Design Wave Height for Non-Breaking Waves
  • 9.8.5 Design Wave Height for Breaking Waves
  • 9.8.6 Model Study
  • 9.9 Water Levels
  • 10. Breakwaters
  • 10.1 Vertical Breakwaters
  • 10.1.1 Introduction
  • 10.1.2 Forces for Non-Breaking Waves
  • 10.1.3 Forces for Breaking Waves
  • 10.1.4 Stability Design
  • 10.1.5 Geotechnical Stability
  • 10.1.6 Other Design Considerations
  • 10.2 Design Examples
  • 10.2.1 Vertical Breakwater in 12 m of Water With a Short Fetch
  • 10.2.2 Vertical Breakwater in 12 m of Water on an Open Coast
  • 10.2.3 Vertical Breakwater in 3 m of Water
  • 10.2.4 Summary
  • 10.3 Rubble Mound Breakwaters
  • 10.3.1 Filter Characteristics
  • 10.3.2 Rock Armor
  • 10.3.3 Concrete Armor
  • 10.3.4 Armor Unit Density
  • 10.3.5 Primary Armor Layer
  • 10.3.6 Breakwater Crest
  • 10.4 Design Examples
  • 10.4.1 Breakwater in 12 m of Water
  • 10.4.2 Breakwater in 3 m of Water
  • 10.5 Berm Breakwaters
  • 11. Introduction to Coastal Management
  • 11.1 Introduction
  • 11.2 Decision Making
  • 11.3 The Coast under Pressure
  • 11.4 Conforming Use
  • 11.5 Conflict and Compatibility
  • 11.6 Management Strategies
  • 11.7 Coastal Management in Spite of the Odds
  • 11.8 Management of Coastal Lands
  • 11.9 Management of Coastal Waters
  • 11.9.1 Groundwater
  • 11.9.2 Waste Water
  • 11.9.3 Other Forms of Pollution
  • 11.10 Example: Management of the Great Lakes—St. Lawrence Shoreline
  • 11.11 Example: Management of Coastal Ecosystems
  • 11.12 Concluding Remarks
  • 12. Coastal Sediment Transport
  • 12.1 Introduction
  • 12.2 Dynamic Beach Profile
  • 12.3 Cross-Shore Transport
  • 12.3.1 Dune-Beach Utopia
  • 12.3.2 Dune-Beach Disturbance
  • 12.3.3 Dune-Beach Encouragement
  • 12.3.4 Soft Protection
  • 12.4 Alongshore Sediment Transport
  • 12.4.1 The Process
  • 12.4.2 Measurement of Littoral Transport
  • 12.4.3 Computation of Littoral Transport
  • 12.5 Complications
  • 12.5.1 Limited Amounts of Beach Material
  • 12.5.2 Sediment Transport in Two Directions
  • 12.5.3 Short Term Littoral Transport
  • 12.6 Cohesive Shores
  • 13. Basic Shore Processes
  • 13.1 Introduction
  • 13.2 Nearshore Current Patterns
  • 13.3 Littoral Materials
  • 13.4 The Beach
  • 13.4.1 Beach Slope
  • 13.4.2 Beach Profile
  • 13.5 Cross Shore Sediment Transport
  • 13.6 Alongshore Sediment Transport Rate
  • 13.6.1 Alongshore Component of Wave Power
  • 13.6.2 CERC Expression
  • 13.6.3 Kamphuis (1991) Expression
  • 13.7 Actual Alongshore Sediment Transport Rate
  • 13.8 The Littoral Cell
  • 13.9 Uncertainty
  • 14. Coastal Design
  • 14.1 Introduction
  • 14.2 Model Classification
  • 14.2.1 Time-Space Classification
  • 14.2.2 Classification by Purpose
  • 14.3 Physical Models
  • 14.3.1 General
  • 14.3.2 Scaling and Scale Effect
  • 14.3.3 Laboratory Effect
  • 14.3.4 Implications for Physical Modeling
  • 14.4 Numerical Modeling
  • 14.4.1 General
  • 14.4.2 Simplifications of Three-Dimensional Models
  • 14.4.3 One-Dimensional Models and their Extensions
  • 14.4.4 Performance of Coastal Models
  • 14.5 Field Measurement and Data Models
  • 14.6 Uncertainty
  • 14.7 Reducing Uncertainty
  • 14.8 Model Interpretation
  • 14.9 The Future
  • 14.10 Composite Modeling
  • 14.11 Summary
  • 15. One-Dimensional Modeling of Coastal Morphology
  • 15.1 Introduction
  • 15.2 The 1-D Morphology Equation
  • 15.3 Sediment Transport Rate
  • 15.3.1 Potential Sediment Transport Rate
  • 15.3.2 Actual Sediment Transport Rate
  • 15.4 Wave Transformation Computation
  • 15.4.1 Wave Shoaling, Refraction and Breaking
  • 15.4.2 Wave Diffraction
  • 15.5 Analytical Computation of Shore Morphology
  • 15.5.1 Simplifications and Assumptions
  • 15.5.2 Complete Barrier Solution
  • 15.5.3 Bypassing Barrier Solution
  • 15.6 Numerical Solutions
  • 15.6.1 Basics
  • 15.6.2 Implicit Finite Difference Scheme
  • 15.6.3 Boundary Conditions
  • 15.6.4 Beach Slope
  • 15.6.5 Large Shoreline Curvatures
  • 15.6.6 Summary
  • 15.7 Examples of Oneline
  • 15.8 Examples of Nline
  • 16. Shore Protection
  • 16.1 Introduction
  • 16.2 Sediment Movement
  • 16.3 Groins
  • 16.4 Seawalls
  • 16.5 Headlands
  • 16.6 Offshore Breakwaters
  • 16.7 Artificial Nourishment
  • 16.8 Concluding Remarks
  • 17. Contemporary Concepts
  • 17.1 Introduction
  • 17.2 Decision Making
  • 17.3 Contemporary Coastal System Design
  • 17.4 Contemporary Decision Making
  • 17.5 Failure, Mitigation and Adaptation
  • 17.6 Risk and Minimum Cost
  • 17.7 Resilience
  • 17.7.1 Introduction of Resilience
  • 17.7.2 Level 1 — Design of a Resilient Pes
  • 17.8. Uncertainty
  • 18. Problems
  • 18.1 Introduction
  • Problem 1.1: Preparation
  • Problem 1.2: Proposal
  • 18.2 Water Waves
  • Problem 2.1: Basic Wave Calculations
  • Problem 2.2: Wave Reflection
  • 18.3 Short-Term Wave Analysis
  • Problem 3.1: Analysis of Fig. 3.4
  • Problem 3.2: Analysis of Collected Wave Data
  • Problem 3.3: Rayleigh Distribution
  • Problem 3.4: Zero Crossing Analysis
  • Problem 3.5: Wave Spectrum
  • Problem 3.6: Laboratory Record
  • 18.4 Long-Term Wave Analysis
  • Problem 4.1: Station 13 Data
  • Problem 4.2: North Sea Wave Climate
  • Problem 4.3: Gulf of St. Lawrence Climate
  • Problem 4.4: 50-Year Storm
  • 18.5 Wave Hindcasting
  • Problem 5.1: Very Simple Wave Hindcast
  • Problem 5.2: Simple Wave Hindcast
  • Problem 5.3: WAVGEN and Shallow Water
  • 18.6 Wave Transformation
  • Problem 6.1: Wave Refraction and Breaking
  • Problem 6.2: Wave Transformation
  • Problem 6.3: Wave Diffraction
  • 18.7 Storm Surge and Extraneous Events
  • Problem 7.1: Storm Surge at Reeds Bay
  • Problem 7.2: Storm Surge and Waves
  • Problem 7.3: Storm Surge and Waves at Site S
  • Problem 7.4: Tsunami Damage on the Maldives
  • Problem 7.5: Sea Level Rise and the Maldives
  • 18.8 Design
  • Problem 8.1: Probability of Failure
  • Problem 8.2: Vertical Breakwater
  • Problem 8.3: Vertical Breakwater at Site M
  • Problem 8.4: Vertical Loading Dock on Gulf of St. Lawrence
  • Problem 8.5: Rubble Mound Breakwater
  • Problem 8.6: Rubble Mound Breakwater at Site M
  • 18.9 Coastal Management
  • Problem 9.1: Expansion at Site M
  • Problem 9.2: Facilities at Site B
  • Problem 9.3: Development of Property
  • 18.10 Sediment Transport and Morphology
  • Problem 10.1: Potential Sediment Transport Rate
  • Problem 10.2: Potential Sediment Transport Rate
  • Problem 10.3: Accretion
  • Problem 10.4: Sediment Transport in Two Directions
  • Problem 10.5: Sea Level Rise
  • Problem 10.6: Northeaster Storm
  • 18.11 Modeling
  • Problem 11.1: Physical Models
  • Problem 11.2: Numerical Models
  • 18.12 Shore Protection
  • Problem 12.1: Recommendations About Shore Protection
  • 18.13 Contemporary Decision Making
  • Problem 13.1: Pre-Design Analysis
  • Problem 13.2: Recommend Improvements to Flood Protection
  • 18.14 Comprehensive Problems
  • Problem 14.1: Design Analysis
  • Problem 14.2: Design of Breakwater with Parapet Wall
  • Problem 14.3: Vertical Breakwater Design
  • References
  • Author Index
  • Subject Index
Show More

Additional information

Veldu vöru

Rafbók til eignar

Aðrar vörur

0
    0
    Karfan þín
    Karfan þín er tómAftur í búð