Introduction to Econometrics

Höfundur Gary Koop

Útgefandi Wiley Global Education US

Snið Page Fidelity

Print ISBN 9780470032701

Útgáfa 1

Útgáfuár 2012

2.890 kr.

Description

Efnisyfirlit

  • Contents
  • Preface
  • Chapter 1: An Overview of Econometrics
  • 1.1 The importance of econometrics
  • 1.2 Types of economic data
  • 1.2.1 Time series data
  • 1.2.2 Cross-sectional data
  • 1.2.3 Panel data
  • 1.2.4 Obtaining data
  • 1.2.5 Data transformations: levels and growth rates
  • 1.3 Working with data: graphical methods
  • 1.3.1 Time series graphs
  • 1.3.2 Histograms
  • 1.3.3 XY plots
  • 1.4 Working with data: descriptive statistics and correlation
  • 1.4.1 Expected values and variances
  • 1.4.2 Correlation
  • 1.4.3 Population Correlations and Covariances
  • 1.5 Chapter summary
  • Exercises
  • Endnotes
  • Chapter 2: A Non-technical Introduction to Regression
  • 2.1 Introduction
  • 2.2 The simple regression model
  • 2.2.1 Regression as a best-¢tting line
  • 2.2.2 Interpreting OLS estimates
  • 2.2.3 Measuring the ¢t of a regression model
  • 2.2.4 Basic statistical concepts in the regression model
  • 2.2.5 Hypothesis testing involving R²: The F-statistic
  • 2.3 The multiple regression model
  • 2.3.1 Ordinary least squares estimation of the multiple regression model
  • 2.3.2 Statistical aspects of multiple regression
  • 2.3.3 Interpreting OLS estimates in the multiple regression model
  • 2.3.4 Which explanatory variables to choose in a multiple regression model?
  • 2.3.5 Multicollinearity
  • 2.3.6 Multiple regression with dummy variables
  • 2.3.7 What if the dependent variable is a dummy?
  • 2.4 Chapter summary
  • Exercises
  • Endnotes
  • Chapter 3: The Econometrics of the Simple Regression Model
  • 3.1 Introduction
  • 3.2 A review of basic concepts in probability in the context of the regression model
  • 3.3 The classical assumptions for the regression model
  • 3.4 Properties of the ordinary least-squares estimator of β
  • 3.5 Deriving a confidence interval for β
  • 3.6 Hypothesis tests about β
  • 3.7 Modifications to statistical procedures when σ² is unknown
  • 3.8 Chapter summary
  • Exercises
  • Appendix 1: Proof of the Gauss^Markov theorem
  • Appendix 2: Using asymptotic theory in the simple regression model
  • Endnotes
  • Chapter 4: The Econometrics of the Multiple Regression Model
  • 4.1 Introduction
  • 4.2 Basic results for the multiple regression model
  • 4.3 Issues relating to the choice of explanatory variables
  • 4.3.1 Omitted variables bias
  • 4.3.2 Inclusion of irrelevant explanatory variables
  • 4.3.3 Multicollinearity
  • 4.4 Hypothesis testing in the multiple regression model
  • 4.4.1 F-tests
  • 4.4.2 Likelihood ratio tests
  • 4.5 Choice of functional form in the multiple regression model
  • 4.5.1 Non-linearity in regression
  • 4.5.2 How to decide which non-linear form?
  • 4.6 Chapter summary
  • Exercises
  • Appendix:Wald and Lagrange multiplier tests
  • Endnotes
  • Chapter 5: The Multiple Regression Model: Freeing Up the Classical Assumptions
  • 5.1 Introduction
  • 5.2 Basic theoretical results
  • 5.3 Heteroskedasticity
  • 5.3.1 Some theoretical results assuming σ²ω²i is known
  • 5.3.2 Heteroskedasticity: Estimation when error variancesare unknown
  • 5.3.3 Testing for heteroskedasticity
  • 5.3.4 Recommendations for empirical practice
  • 5.4 The regression model with autocorrelated errors
  • 5.4.1 Properties of autocorrelated errors
  • 5.4.2 The GLS estimator for the regression model withautocorrelated errors
  • 5.4.3 Testing for autocorrelated errors
  • 5.5 The instrumental variables estimator
  • 5.5.1 Case 1: The explanatory variable is random butindependent of the error
  • 5.5.2 Case 2: The explanatory variable is correlatedwith the error term
  • 5.5.3 Why might the explanatory variable be correlatedwith error?
  • 5.6 Chapter summary
  • Exercises
  • Appendix: Asymptotic results for the OLS and instrumental variables estimators
  • Endnotes
  • Chapter 6: UnivariateTime Series Analysis
  • 6.1 Introduction
  • 6.2 Time series notation
  • 6.3 Trends in time series variables
  • 6.4 The autocorrelation function
  • 6.5 The autoregressive model
  • 6.5.1 The AR(1) model
  • 6.5.2 Extensions of the AR(1) model
  • 6.5.3 Testing in the AR(p) with deterministic trend model
  • 6.6 Defining stationarity
  • 6.7 Modeling volatility
  • 6.7.1 Volatility in asset prices: introduction
  • 6.7.2 Autoregressive conditional heteroskedasticity (ARCH)
  • 6.8 Chapter summary
  • Exercises
  • Appendix: MA and ARMA models
  • Endnotes
  • Chapter 7: Regression withTime SeriesVariables
  • 7.1 Introduction
  • 7.2 Time series regression when X and Yare stationary
  • 7.3 Time series regression whenYand X have unit roots
  • 7.3.1 Spurious regression
  • 7.3.2 Cointegration
  • 7.3.3 Estimation and testing with cointegrated variables
  • 7.3.4 Time series regression when Y and X are cointegrated:the error correction model
  • 7.4 Time series regression whenYand X have unit roots but are NOTcointegrated
  • 7.5 Granger causality
  • 7.5.1 Granger causality in the ADL model
  • 7.5.2 Granger causality with cointegrated variables
  • 7.6 Vector autoregressions
  • 7.6.1 Forecasting withVARs
  • 7.6.2 Vector Autoregressions with cointegrated variables
  • 7.6.3 UsingVARs: impulse response functionsand variance decompositions
  • 7.7 Chapter summary
  • Exercises
  • Appendix: The theory of forecasting
  • Endnotes
  • Chapter 8: Models for Panel Data
  • 8.1 Introduction
  • 8.2 The pooled model
  • 8.3 Individual e¡ects models
  • 8.3.1 The fixed e¡ects model
  • 8.3.2 The random e¡ects model
  • 8.3.3 Extensions to individual e¡ects models
  • 8.4 Chapter summary
  • Exercises
  • Endnotes
  • Chapter 9: Qualitative Choice and Limited Dependent Variable Models
  • 9.1 Introduction
  • 9.2 Qualitative choice models
  • 9.2.1 Binary choice models
  • 9.2.2 Multinomial choice models
  • 9.3 Limited dependent variable models
  • 9.3.1 Tobit
  • 9.3.2 Working with count data
  • 9.3.3 Extensions
  • 9.4 Chapter summary
  • Exercises
  • Endnotes
  • Chapter 10: Bayesian Econometrics
  • 10.1 An overview of Bayesian econometrics
  • 10.2 The normal linear regression model with natural conjugate prior and a single explanatory variab
  • 10.2.1 The likelihood function
  • 10.2.2 The prior
  • 10.2.3 The posterior
  • 10.2.4 Model comparison in the simple regression model
  • 10.3 Chapter summary
  • Exercises
  • Appendix: Bayesian analysis of the simple regression model with unknown variance
  • Endnotes
  • Appendix A: Mathematical Basics
  • Functions and the equation of a straight line
  • Logarithms
  • Summation and product notation
  • Appendix B: Probability Basics
  • Basic concepts of probability
  • Definition B.1: Experiments and events
  • Definition B.2: Discrete and continuous variables
  • Definition B.3: Random variables and probability (informal definition)
  • Definition B.4: Independence
  • Definition B.5: Conditional probability
  • Definition B.6: Probability and distribution functions
  • Definition B.7: Probability density and distribution functions
  • Definition B.8: Expected value, variance, covariance, and correlation
  • Definition B.9: Joint probability density functions
  • Definition B.10: The normal distribution
  • Definition B.11: The chi-square distribution
  • Definition B.12: The Student t distribution
  • Definition B.13: The F-distribution
  • Definition B.14: Other statistical terminology
  • Advanced material used only in the appendix to Chapter 10
  • Definition B.15: The gamma distribution
  • Definition B.16: The t-distribution
  • Definition B.17: The normal–gamma distribution
  • Appendix C: Basic Concepts in Asymptotic Theory
  • Convergence in probability
  • A basic law of large numbers
  • Another law of large numbers
  • Convergence in distribution
  • A basic central limit theorem
  • Other useful theorems
  • Appendix D: Writing an Empirical Project
  • Description of a typical empirical project
  • General considerations
  • Project topics
  • Project 1: The equity underpricing puzzle
  • Project 2: What moves the stock and bond markets?
  • Tables
  • Table 1. Area under the standard normal distribution Pr(0 ≤ Z ≤ z)
  • Table 2. Area under the Student t distribution for di¡erent degrees of freedom (DF), Pr(Z ≥ z) =
  • Table 3. Percentiles of the chi-square distribution
  • Table 4a. Area under the F-distribution for di¡erent degrees of freedom, n1 and n2, Pr(Z ≥ z) = 0
  • Table 4b. Area under the F-distribution for di¡erent degrees of freedom, n1 and n2, Pr(Z ≥ z) = 0
  • Bibliography
  • Index
Show More

Additional information

Veldu vöru

Leiga á rafbók í 150 daga, Rafbók til eignar

Aðrar vörur

0
    0
    Karfan þín
    Karfan þín er tómAftur í búð