Mathematical Methods in the Physical Sciences

Höfundur Mary L. Boas

Útgefandi Wiley Global Education US

Snið Page Fidelity

Print ISBN 9780471198260

Útgáfa 3

Útgáfuár 2006

6.690 kr.

Description

Efnisyfirlit

  • Copyright
  • Preface
  • To the Student
  • Contents
  • CHAPTER 1 Infinite Series, Power Series
  • 1. THE GEOMETRIC SERIES
  • 2. DEFINITIONS AND NOTATION
  • 3. APPLICATIONS OF SERIES
  • 4. CONVERGENT AND DIVERGENT SERIES
  • 5. TESTING SERIES FOR CONVERGENCE; THE PRELIMINARY TEST
  • 6. CONVERGENCE TESTS FOR SERIES OF POSITIVE TERMS; ABSOLUTE CONVERGENCE
  • A. The Comparison Test
  • B. The Integral Test
  • C. The Ratio Test
  • D. A Special Comparison Test
  • 7. ALTERNATING SERIES
  • 8. CONDITIONALLY CONVERGENT SERIES
  • 9. USEFUL FACTS ABOUT SERIES
  • 10. POWER SERIES; INTERVAL OF CONVERGENCE
  • 11. THEOREMS ABOUT POWER SERIES
  • 12. EXPANDING FUNCTIONS IN POWER SERIES
  • 13. TECHNIQUES FOR OBTAINING POWER SERIES EXPANSIONS
  • A. Multiplying a Series by a Polynomial or by Another Series
  • B. Division of Two Series or of a Series by a Polynomial
  • C. Binomial Series
  • D. Substitution of a Polynomial or a Series for the Variable in Another Series
  • E. Combination of Methods
  • F. Taylor Series Using the Basic Maclaurin Series
  • G. Using a Computer
  • 14. ACCURACY OF SERIES APPROXIMATIONS
  • 15. SOME USES OF SERIES
  • 16. MISCELLANEOUS PROBLEMS
  • CHAPTER 2 Complex Numbers
  • 1. INTRODUCTION
  • 2. REAL AND IMAGINARY PARTS OF A COMPLEX NUMBER
  • 3. THE COMPLEX PLANE
  • 4. TERMINOLOGY AND NOTATION
  • 5. COMPLEX ALGEBRA
  • A. Simplifying to x+iy form
  • B. Complex Conjugate of a Complex Expression
  • C. Finding the Absolute Value of z
  • D. Complex Equations
  • E. Graphs
  • F. Physical Applications
  • 6. COMPLEX INFINITE SERIES
  • 7. COMPLEX POWER SERIES; DISK OF CONVERGENCE
  • 8. ELEMENTARY FUNCTIONS OF COMPLEX NUMBERS
  • 9. EULER’S FORMULA
  • 10. POWERS AND ROOTS OF COMPLEX NUMBERS
  • 11. THE EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS
  • 12. HYPERBOLIC FUNCTIONS
  • 13. LOGARITHMS
  • 14. COMPLEX ROOTS AND POWERS
  • 15. INVERSE TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS
  • 16. SOME APPLICATIONS
  • 17. MISCELLANEOUS PROBLEMS
  • CHAPTER 3 Linear Algebra
  • 1. INTRODUCTION
  • 2. MATRICES; ROW REDUCTION
  • 3. DETERMINANTS; CRAMER’S RULE
  • 4. VECTORS
  • 5. LINES AND PLANES
  • 6. MATRIX OPERATIONS
  • 7. LINEAR COMBINATIONS, LINEAR FUNCTIONS, LINEAR OPERATORS
  • 8. LINEAR DEPENDENCE AND INDEPENDENCE
  • 9. SPECIAL MATRICES AND FORMULAS
  • 10. LINEAR VECTOR SPACES
  • 11. EIGENVALUES AND EIGENVECTORS; DIAGONALIZING MATRICES
  • 12. APPLICATIONS OF DIAGONALIZATION
  • 13. A BRIEF INTRODUCTION TO GROUPS
  • 14. GENERAL VECTOR SPACES
  • 15. MISCELLANEOUS PROBLEMS
  • CHAPTER 4 Partial Differentiation
  • 1. INTRODUCTION AND NOTATION
  • 2. POWER SERIES IN TWO VARIABLES
  • 3. TOTAL DIFFERENTIALS
  • 4. APPROXIMATIONS USING DIFFERENTIALS
  • 5. CHAIN RULE OR DIFFERENTIATING A FUNCTION OF A FUNCTION
  • 6. IMPLICIT DIFFERENTIATION
  • 7. MORE CHAIN RULE
  • 8. APPLICATION OF PARTIAL DIFFERENTIATION TO MAXIMUM AND MINIMUM PROBLEMS
  • 9. MAXIMUM AND MINIMUM PROBLEMS WITH CONSTRAINTS; LAGRANGE MULTIPLIERS
  • 10. ENDPOINT OR BOUNDARY POINT PROBLEMS
  • 11. CHANGE OF VARIABLES
  • 12. DIFFERENTIATION OF INTEGRALS; LEIBNIZ’ RULE
  • 13. MISCELLANEOUS PROBLEMS
  • CHAPTER 5 Multiple Integrals; Applications of Integration
  • 1. INTRODUCTION
  • 2. DOUBLE AND TRIPLE INTEGRALS
  • 3. APPLICATIONS OF INTEGRATION; SINGLE AND MULTIPLE INTEGRALS
  • 4. CHANGE OF VARIABLES IN INTEGRALS; JACOBIANS
  • 5. SURFACE INTEGRALS
  • 6. MISCELLANEOUS PROBLEMS
  • CHAPTER 6 Vector Analysis
  • 1. INTRODUCTION
  • 2. APPLICATIONS OF VECTOR MULTIPLICATION
  • 3. TRIPLE PRODUCTS
  • 4. DIFFERENTIATION OF VECTORS
  • 5. FIELDS
  • 6. DIRECTIONAL DERIVATIVE; GRADIENT
  • 7. SOME OTHER EXPRESSIONS INVOLVING ∇
  • 8. LINE INTEGRALS
  • 9. GREEN’S THEOREM IN THE PLANE
  • 10. THE DIVERGENCE AND THE DIVERGENCE THEOREM
  • 11. THE CURL AND STOKES’ THEOREM
  • 12. MISCELLANEOUS PROBLEMS
  • CHAPTER 7 Fourier Series and Transforms
  • 1. INTRODUCTION
  • 2. SIMPLE HARMONIC MOTION AND WAVE MOTION; PERIODIC FUNCTIONS
  • 3. APPLICATIONS OF FOURIER SERIES
  • 4. AVERAGE VALUE OF A FUNCTION
  • 5. FOURIER COEFFICIENTS
  • 6. DIRICHLET CONDITIONS
  • 8. OTHER INTERVALS
  • 9. EVEN AND ODD FUNCTIONS
  • 10. AN APPLICATION TO SOUND
  • 11. PARSEVAL’S THEOREM
  • 12. FOURIER TRANSFORMS
  • 13. MISCELLANEOUS PROBLEMS
  • CHAPTER 8 Ordinary Differential Equations
  • 1. INTRODUCTION
  • 2. SEPARABLE EQUATIONS
  • 3. LINEAR FIRST-ORDER EQUATIONS
  • 4. OTHER METHODS FOR FIRST-ORDER EQUATIONS
  • 5. SECOND-ORDER LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS AND ZERO RIGHT-HAND SIDE
  • 6. SECOND-ORDER LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS AND RIGHT-HAND SIDE NOT ZERO
  • 7. OTHER SECOND-ORDER EQUATIONS
  • 8. THE LAPLACE TRANSFORM
  • 9. SOLUTION OF DIFFERENTIAL EQUATIONS BY LAPLACE TRANSFORMS
  • 10. CONVOLUTION
  • 11. THE DIRAC DELTA FUNCTION
  • 12. A BRIEF INTRODUCTION TO GREEN FUNCTIONS
  • 13. MISCELLANEOUS PROBLEMS
  • CHAPTER 9 Calculus of Variations
  • 1. INTRODUCTION
  • 2. THE EULER EQUATION
  • 3. USING THE EULER EQUATION
  • 4. THE BRACHISTOCHRONE PROBLEM; CYCLOIDS
  • 5. SEVERAL DEPENDENT VARIABLES; LAGRANGE’S EQUATIONS
  • 6. ISOPERIMETRIC PROBLEMS
  • 7. VARIATIONAL NOTATION
  • 8. MISCELLANEOUS PROBLEMS
  • CHAPTER 10 Tensor Analysis
  • 1. INTRODUCTION
  • 2. CARTESIAN TENSORS
  • 3. TENSOR NOTATION AND OPERATIONS
  • 4. INERTIA TENSOR
  • 5. KRONECKER DELTA AND LEVI-CIVITA SYMBOL
  • 6. PSEUDOVECTORS AND PSEUDOTENSORS
  • 7. MORE ABOUT APPLICATIONS
  • 8. CURVILINEAR COORDINATES
  • 9. VECTOR OPERATORS IN ORTHOGONAL CURVILINEAR COORDINATES
  • 10. NON-CARTESIAN TENSORS
  • 11. MISCELLANEOUS PROBLEMS
  • CHAPTER 11 Special Functions
  • 1. INTRODUCTION
  • 2. THE FACTORIAL FUNCTION
  • 3. DEFINITION OF THE GAMMA FUNCTION; RECURSION RELATION
  • 4. THE GAMMA FUNCTION OF NEGATIVE NUMBERS
  • 5. SOME IMPORTANT FORMULAS INVOLVING GAMMA FUNCTIONS
  • 6. BETA FUNCTIONS
  • 7. BETA FUNCTIONS IN TERMS OF GAMMA FUNCTIONS
  • 8. THE SIMPLE PENDULUM
  • 9. THE ERROR FUNCTION
  • 10. ASYMPTOTIC SERIES
  • 11. STIRLING’S FORMULA
  • 12. ELLIPTIC INTEGRALS AND FUNCTIONS
  • 13. MISCELLANEOUS PROBLEMS
  • CHAPTER 12 Series Solutions of Differential Equations; Legendre, Bessel, Hermite, and Laguerre Funct
  • 1. INTRODUCTION
  • 2. LEGENDRE’S EQUATION
  • 3. LEIBNIZ’ RULE FOR DIFFERENTIATING PRODUCTS
  • 4. RODRIGUES’ FORMULA
  • 5. GENERATING FUNCTION FOR LEGENDRE POLYNOMIALS
  • 6. COMPLETE SETS OF ORTHOGONAL FUNCTIONS
  • 7. ORTHOGONALITY OF THE LEGENDRE POLYNOMIALS
  • 8. NORMALIZATION OF THE LEGENDRE POLYNOMIALS
  • 9. LEGENDRE SERIES
  • 10. THE ASSOCIATED LEGENDRE FUNCTIONS
  • 11. GENERALIZED POWER SERIES OR THE METHOD OF FROBENIUS
  • 12. BESSEL’S EQUATION
  • 13. THE SECOND SOLUTION OF BESSEL’S EQUATION
  • 14. GRAPHS AND ZEROS OF BESSEL FUNCTIONS
  • 15. RECURSION RELATIONS
  • 16. DIFFERENTIAL EQUATIONS WITH BESSEL FUNCTION SOLUTIONS
  • 17. OTHER KINDS OF BESSEL FUNCTIONS
  • 18. THE LENGTHENING PENDULUM
  • 19. ORTHOGONALITY OF BESSEL FUNCTIONS
  • 20. APPROXIMATE FORMULAS FOR BESSEL FUNCTIONS
  • 21. SERIES SOLUTIONS; FUCHS’S THEOREM
  • 22. HERMITE FUNCTIONS; LAGUERRE FUNCTIONS; LADDER OPERATORS
  • 23. MISCELLANEOUS PROBLEMS
  • CHAPTER 13 Partial Differential Equations
  • 1. INTRODUCTION
  • 2. LAPLACE’S EQUATION; STEADY-STATE TEMPERATURE IN A RECTANGULAR PLATE
  • 3. THE DIFFUSION OR HEAT FLOW EQUATION; THE SCHRODINGER EQUATION
  • 4. THEWAVE EQUATION; THE VIBRATING STRING
  • 5. STEADY-STATE TEMPERATURE IN A CYLINDER
  • 6. VIBRATION OF A CIRCULAR MEMBRANE
  • 7. STEADY-STATE TEMPERATURE IN A SPHERE
  • 8. POISSON’S EQUATION
  • 9. INTEGRAL TRANSFORM SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS
  • 10. MISCELLANEOUS PROBLEMS
  • CHAPTER 14 Functions of a Complex Variable
  • 1. INTRODUCTION
  • 2. ANALYTIC FUNCTIONS
  • 3. CONTOUR INTEGRALS
  • 4. LAURENT SERIES
  • 5. THE RESIDUE THEOREM
  • 6. METHODS OF FINDING RESIDUES
  • 7. EVALUATION OF DEFINITE INTEGRALS BY USE OF THE RESIDUE THEOREM
  • 8. THE POINT AT INFINITY; RESIDUES AT INFINITY
  • 9. MAPPING
  • 10. SOME APPLICATIONS OF CONFORMAL MAPPING
  • 11. MISCELLANEOUS PROBLEMS
  • CHAPTER 15 Probability and Statistics
  • 1. INTRODUCTION
  • 2. SAMPLE SPACE
  • 3. PROBABILITY THEOREMS
  • 4. METHODS OF COUNTING
  • 5. RANDOM VARIABLES
  • 6. CONTINUOUS DISTRIBUTIONS
  • 7. BINOMIAL DISTRIBUTION
  • 8. THE NORMAL OR GAUSSIAN DISTRIBUTION
  • 9. THE POISSON DISTRIBUTION
  • 10. STATISTICS AND EXPERIMENTAL MEASUREMENTS
  • 11. MISCELLANEOUS PROBLEMS
  • References
  • Answers to Selected Problems
  • Index
Show More

Additional information

Veldu vöru

Leiga á rafbók í 150 daga, Rafbók til eignar

Aðrar vörur

0
    0
    Karfan þín
    Karfan þín er tómAftur í búð