Mechatronics

Höfundur Clarence W. de Silva

Útgefandi Taylor & Francis

Snið Page Fidelity

Print ISBN 9781482239317

Útgáfa 1

Útgáfuár 2016

24.590 kr.

Description

Efnisyfirlit

  • Contents
  • Preface
  • Acknowledgments
  • Editors
  • Contributors
  • Chapter 1: Mechatronic Engineering
  • 1.1 Introduction
  • 1.2 Modeling and Design
  • 1.3 Mechatronic Design Concept
  • 1.3.1 Coupled Design
  • 1.3.2 Mechatronic Design Quotient (MDQ)
  • 1.3.3 Design Evolution
  • 1.4 Mechatronic Instrumentation
  • 1.5 Evolution of Mechatronics
  • 1.6 Application Areas
  • 1.7 Conclusion
  • References
  • Section I: Fundamentals
  • Chapter 2: Modeling for Control of Rigid Bodies in 3-D Space
  • 2.1 Introduction
  • 2.2 Theory
  • 2.2.1 Definitions and Assumptions
  • 2.2.2 Equations of Motion for the Linear Model
  • 2.2.3 Linear Momentum Force Systems
  • 2.2.4 Generalization of the Equations of Moment of Momentum
  • 2.2.5 Assembly of Equations
  • 2.3 Modeling Sensors and Actuators into the Model
  • 2.3.1 Modeling Actuators
  • 2.3.2 Modeling Sensors and Feedback
  • 2.4 Introduction to Software MBDS
  • 2.4.1 A Simple Two-Mass Spring System with an Actuator and a Relative Velocity Sensor
  • 2.4.2 Response of the System to a Simple Step Function
  • 2.5 Conclusions
  • References
  • Chapter 3: Mechanics of Materials
  • 3.1 Elastic Stress and Strain
  • 3.1.1 Introduction
  • 3.1.2 Load
  • 3.1.3 Stress
  • 3.1.4 Nonuniform Stress
  • 3.1.5 Complementary Shear Stresses
  • 3.1.6 Deformation
  • 3.1.7 Strain
  • 3.1.8 Elasticity and Yield
  • 3.1.9 Hooke’s Law and Elastic Constants
  • 3.2 Theory of Bending
  • 3.2.1 Introduction
  • 3.2.2 Definition
  • 3.2.3 Sign Convention of Bending Moment and Shearing Force
  • 3.2.4 Bending Moment and Shear Force Diagrams
  • 3.2.5 Bending Stresses
  • 3.3 Deflection of Transverse Loaded Slender Beams
  • 3.3.1 Beam Deflection
  • 3.3.2 Flexure Equation
  • 3.3.3 Equilibrium and Determinacy
  • 3.3.4 Bending Moments
  • 3.3.5 Flexure Equation
  • 3.3.6 Deflection of a Transverse Loaded Beam
  • 3.3.7 Deflection of Statically Indeterminate Beams
  • 3.3.8 Beams with Discontinuous Bending Moment Equations
  • 3.3.9 Singularity Function Method (Often Called Macaulay’s Method)
  • 3.4 Theory of Torsion
  • 3.4.1 Introduction
  • 3.4.2 Shear Strain/Stress Distribution
  • 3.4.3 Torque T and Rate of Twist
  • 3.4.4 Shear Stress from Torsion
  • 3.5 Stress Transformation in Two Dimensions
  • 3.5.1 Introduction
  • 3.5.2 General State of Stress in Three Dimensions
  • 3.5.3 General State of Stress in Two Dimensions
  • 3.5.4 Analysis of Plane Stress in Two Dimensions
  • 3.5.5 Calculation of Strains from Stresses
  • 3.6 Strain Analysis and the Strain Gauge Rosettes
  • 3.6.1 Introduction
  • 3.6.2 Strain Gauge Rosettes
  • 3.6.3 Conversion from Principal Strains to Principal Stresses
  • 3.7 Mechanical Properties of Materials
  • 3.7.1 Introduction
  • 3.7.2 Tension and Compression Tests
  • 3.7.3 Stress–Strain Behavior of Ductile Materials
  • 3.7.4 Poisson’s Ratio
  • 3.8 Conclusions
  • References
  • Chapter 4: Control of Mechatronic Systems
  • 4.1 What Is a Mechatronic System?
  • 4.2 Overview of Control Systems
  • 4.2.1 System Model
  • 4.2.2 System Modeling Applied to Components of Mechatronic Systems
  • 4.2.3 Performance Assessment of a Control System
  • 4.3 Control Techniques
  • 4.3.1 Feedback Proportional–Integral–Derivative (PID) Control
  • 4.3.2 Feedforward Control
  • 4.3.3 Servo Control Structures
  • 4.3.4 Programmable Logic Controllers
  • 4.4 Implementation of a Computer Control
  • 4.5 Challenges in Control of Mechatronic Systems
  • 4.5.1 Friction
  • 4.5.2 Force Ripples
  • 4.5.3 Hysteresis and Backlash
  • 4.5.4 Saturation
  • 4.5.5 Dead Zone
  • 4.5.6 Reference Signal Changes
  • 4.5.7 Low-Frequency Drift
  • 4.5.8 High-Frequency Noise
  • 4.5.9 Incorporating and Addressing Nonlinear Dynamics
  • 4.6 Application Examples
  • 4.6.1 Flight Simulators
  • 4.6.2 Piezoelectric Control System for Biomedical Application
  • 4.7 Conclusions
  • Bibliography
  • Chapter 5: Introduction to Sensors and Signal Processing
  • 5.1 Introduction
  • 5.2 Signals
  • 5.2.1 Types of Time Signals and Waveforms
  • 5.2.2 Harmonic Signals
  • 5.2.3 Quantification of Energy in a Signal: RMS
  • 5.2.4 Useful Relationships and Common Waveforms
  • 5.3 Fourier Analysis
  • 5.3.1 Introduction
  • 5.3.2 Fourier Transform
  • 5.3.3 Fourier Transform Application Example
  • 5.3.4 Basics of the Discrete and Fast Fourier Transforms
  • 5.4 Signal Processing
  • 5.4.1 Aliasing
  • 5.4.2 Quantization Errors
  • 5.4.3 Leakage and Windowing
  • 5.4.4 Convolution
  • 5.4.5 Random Signals
  • 5.4.6 Butterworth Filter
  • 5.4.7 Smoothing Filters
  • 5.5 Sensors
  • 5.5.1 Accelerometers
  • 5.5.2 Velocity Transducers
  • 5.5.3 Displacement Transducers
  • 5.5.4 Strain Gauges
  • 5.5.5 Load Cells
  • 5.5.6 Temperature Sensors
  • 5.5.7 Flow Sensors
  • 5.5.8 Pressure Transducers
  • 5.5.9 Ultrasonic Sensors
  • 5.5.10 Other Sensors
  • 5.6 Logarithmic Scales
  • 5.6.1 Decibel
  • 5.6.2 Octave
  • 5.7 Conclusions
  • References
  • Chapter 6: Bio-MEMS Sensors and Actuators
  • 6.1 Introduction
  • 6.2 Bio-MEMS Actuators
  • 6.2.1 Artificial Muscles
  • 6.2.2 Ciliary Actuators
  • 6.2.3 Nanotweezers for Micromanipulation of Biomolecules
  • 6.2.4 Application of Capillary Valves in Microfluidic Devices
  • 6.2.5 Drug Delivery
  • 6.2.6 Biomolecular Systems
  • 6.3 Bio-MEMS Sensors
  • 6.3.1 Triglyceride Biosensor
  • 6.3.2 Bio-MEMS Sensor for C-Reactive Protein Detection
  • 6.3.3 Glucose Detection
  • 6.3.4 MEMS Force Sensor for Protein Delivery
  • 6.3.5 Tissue Softness Characterization
  • 6.3.6 Blood Cell Counter
  • 6.3.7 Acoustic Sensor
  • 6.4 Conclusions
  • References
  • Chapter 7: System Identification in Human Adaptive Mechatronics
  • 7.1 From Manual Control to Human Adaptive Mechatronics
  • 7.2 Human in the Loop
  • 7.3 Classical HO Model
  • 7.3.1 Quasi-Linear Structure
  • 7.3.2 Crossover Model
  • 7.4 Identification of Quasi-Linear Model
  • 7.4.1 Signal and Spectra
  • 7.4.2 Nonparametric Quasi-Linear Model
  • 7.4.3 Parametric Quasi-Linear Model
  • 7.4.4 Experiment and Model Identification Results
  • 7.5 Identification through Optimal Control Theory
  • 7.5.1 Linear Regulator Problem
  • 7.5.2 LQG Controller without Time Delay
  • 7.5.3 LQG Controller with Time Delay
  • 7.5.4 Optimal Control Model for the Human Operator
  • 7.5.5 Human Optimal Control Model (OCM)
  • 7.5.6 Motor Noise Effect
  • 7.5.7 Modified Optimal Control Model (MOCM)
  • 7.5.8 Identification of Optimal Control Model
  • 7.5.9 Data-Based HO Model Identification
  • 7.6 Conclusions
  • References
  • Chapter 8: Intelligent Robotic Systems
  • 8.1 Introduction
  • 8.2 Biological Immune System
  • 8.2.1 Jerne’s Idiotypic Network Theory
  • 8.3 Artificial Immune System (AIS)
  • 8.3.1 Network Theory Model
  • 8.4 Multi-Robot Cooperation Problem
  • 8.4.1 Fault Tolerance
  • 8.4.2 Decision Conflicts
  • 8.4.3 Interdependencies and Priorities
  • 8.5 Multi-Robot Cooperation and Artificial Immune System
  • 8.5.1 Binding Affinity
  • 8.5.2 Robot and Antibody
  • 8.5.3 Multi-Robot Cooperation and Modified Idiotypic Network Model
  • 8.6 Genetic Algorithm
  • 8.6.1 Operators of GA
  • 8.6.2 Simple GA
  • 8.7 Optimizing Binding Affinity Function Using GA
  • 8.8 Results and Discussion
  • 8.9 Conclusions
  • References
  • Section II: Applications
  • Chapter 9: Automated Mechatronic Design Tool
  • 9.1 Introduction
  • 9.1.1 Mechatronic Design Theory
  • 9.2 Evolutionary Mechatronic Tool
  • 9.2.1 Genetic Programming
  • 9.2.2 Bond Graphs
  • 9.2.3 Integration of Bond Graphs and Genetic Programming
  • 9.3 Controller Design Using Bond Graphs
  • 9.4 Two-Loop Design Model
  • 9.4.1 Hybrid Genetic Algorithm with Genetic Programming
  • 9.4.2 Case Study: Iron Butcher Controller Design [15]
  • 9.5 Niching Optimization Scheme
  • 9.5.1 Niching Genetic Programming
  • 9.5.2 Case Study: Model-Referenced Active Car Suspension [19]
  • 9.5.3 Case Study: Hydraulic Engine Mount Design
  • 9.6 Conclusions
  • References
  • Chapter 10: Design Evolution of Mechatronic Systems
  • 10.1 Introduction
  • 10.2 Modeling Multidomain Systems
  • 10.2.1 Bond Graph Modeling
  • 10.2.2 Linear Graphs
  • 10.3 Design Evolution
  • 10.3.1 Evolutionary Design Framework with BGs
  • 10.3.2 Methodology
  • 10.3.3 Solution Representation for the Evolution
  • 10.3.4 Fitness Function
  • 10.4 Application of Methodology to Industrial Systems
  • 10.4.1 Illustrative Scenario 1
  • 10.4.2 Illustrative Example of Application of LG Methodology
  • 10.4.3 Illustrative Scenario 2
  • 10.5 Conclusions
  • References
  • Chapter 11: Mechatronic Design of Unmanned Aircraft Systems
  • 11.1 Introduction
  • 11.2 Unmanned System Hardware
  • 11.2.1 Sensors and Measurement Systems
  • 11.2.2 Computers
  • 11.2.3 Actuator Management
  • 11.2.4 Communication Unit
  • 11.2.5 Hardware Integration
  • 11.3 Unmanned System Software
  • 11.3.1 Onboard Real-Time Software System
  • 11.3.2 Ground Control Software System
  • 11.4 Case I: Design of a Coaxial Rotorcraft System
  • 11.4.1 Hardware System
  • 11.4.2 Software System
  • 11.4.3 Experimental Results
  • 11.5 Case II: Design of a UAV Cargo Transportation System
  • 11.5.1 Hardware System
  • 11.5.2 Software System
  • 11.5.3 Experimental Results
  • 11.6 Conclusion
  • References
  • Chapter 12: Self-Powered and Bio-Inspired Dynamic Systems
  • 12.1 Introduction
  • 12.2 Energy Harvesting
  • 12.2.1 Energy Conversion Mechanisms
  • 12.3 Self-Powered Dynamic Systems
  • 12.3.1 Concept of Self-Powered Dynamic Systems
  • 12.3.2 Theory of Self-Powered Systems
  • 12.3.3 Renewable Energy for Dynamic Systems
  • 12.3.4 Human-Powered Systems
  • 12.4 Bio-Inspired Dynamic Systems
  • 12.4.1 Piezoelecteric Energy Harvesting from Aeroelastic Vibrations
  • 12.4.2 Fish Schooling Inspired Vertical Axis Wind Turbine Farm
  • 12.4.3 Bio-Inspired Self-Propelled Vehicle
  • 12.4.4 Bio-Inspired Flapping Wing Flying Robots
  • 12.4.5 Bio-Inspired Flight Control System
  • 12.4.6 Uncertainty Quantification
  • 12.5 Conclusions
  • References
  • Chapter 13: Visual Servo Systems for Mobile Robots
  • 13.1 Introduction
  • 13.2 Mobile Robotic Visual Servo Systems
  • 13.2.1 State of the Art of Mobile Robotic Systems
  • 13.2.2 Typical Sensors
  • 13.3 Visual Servoing
  • 13.3.1 Basic Categories of Visual Servoing
  • 13.3.2 Modeling of Visual Servo System
  • 13.4 Case Study of Visual Servoing
  • 13.4.1 System Modeling
  • 13.4.2 Traditional Image-Based Visual Servoing
  • 13.4.3 Adaptive Nonlinear Model Predictive Control
  • 13.5 Conclusions
  • References
  • Chapter 14: Robotic Learning and Applications
  • 14.1 Introduction
  • 14.2 Markov Decision Process (MDP) and Q Learning
  • 14.3 Case Study: Multi-Robot Transportation Using Machine Learning
  • 14.3.1 Multi-Agent Infrastructure
  • 14.3.2 Cooperation Based on Machine Learning
  • 14.3.3 Simulation Results
  • 14.3.4 Experimentation
  • 14.4 Case Study: A Hybrid Visual Servo Controller Using Q Learning
  • 14.4.1 Vision-Based Mobile Robot Motion Control
  • 14.4.2 Hybrid Controller for Robust Visual Servoing
  • 14.4.3 Experimental Results
  • 14.5 Conclusions
  • References
  • Chapter 15: Neuromechatronics with In Vitro Microelectrode Arrays
  • 15.1 Introduction
  • 15.1.1 Evolution of Mechatronics
  • 15.1.2 Neuromechatronics
  • 15.1.3 Neuronal Networks
  • 15.2 In Vitro Microelectrode Arrays (MEAs)
  • 15.2.1 MEAs among Other Neural Recording Techniques
  • 15.2.2 Functionality of MEAs
  • 15.2.3 Strengths and Weaknesses of MEAs
  • 15.2.4 MEA Systems and Software
  • 15.3 Dynamics of Microelectrode Array Recordings
  • 15.3.1 Spikes
  • 15.3.2 Bursts
  • 15.3.3 Network Bursts
  • 15.4 Detection of Network Dynamics
  • 15.4.1 Spike Detection
  • 15.4.2 Spike Sorting
  • 15.4.3 Burst Detection
  • 15.4.4 Network Burst Detection
  • 15.4.5 General Analysis Methods
  • 15.4.6 Identifying Functional Motifs
  • 15.5 Embodied Neural Networks
  • 15.5.1 Supervised Learning
  • 15.5.2 Unsupervised Learning
  • 15.6 Conclusion
  • References
  • Back Cover
Show More

Additional information

Veldu vöru

Rafbók til eignar

Aðrar vörur

1
    1
    Karfan þín
    Africa 2.0
    Africa 2.0
    Veldu vöru:

    Rafbók til eignar

    1 X 4.590 kr. = 4.590 kr.