Mechatronics

Höfundur DavidAllan Bradley

Útgefandi Taylor & Francis

Snið ePub

Print ISBN 9780367111885

Útgáfa 1

Útgáfuár 1991

12.890 kr.

Description

Efnisyfirlit

  • Cover
  • Half Title
  • Title Page
  • Copyright Page
  • Table of Contents
  • Preface
  • 1 What is mechatronics?
  • 1.1 Mechatronics in manufacturing
  • 1.2 Mechatronics in products
  • 1.3 Mechatronics and engineering design
  • 1.3.1 A modular approach to mechatronics and engineering design
  • 1.4 The engineer and mechatronics
  • 1.5 Mechatronics and technology
  • Part One Sensors and Transducers
  • 2 Measurement systems
  • 2.1 Sensors, transducers and measurement
  • 2.2 Classification
  • 2.2.1 Classification by function
  • 2.2.2 Classification by performance
  • 2.2.3 Classification by output
  • 2.3 Developments in transducer technology
  • 2.3.1 Solid state transducers
  • 2.3.2 Optical transducers
  • 2.3.3 Piezoelectric transducers
  • 2.3.4 Ultrasonic transducers
  • 2.4 Signal processing and information management
  • 2.5 The design of a measurement system
  • 3 Resistive, capacitive, inductive and resonant transducers
  • 3.1 Resistive transducers
  • 3.1.1 Potentiometers
  • 3.1.2 Strain gauges
  • 3.1.3 Resistive temperature transducers
  • 3.2 Capacitive transducers
  • 3.3 Inductive transducers
  • 3.3.1 Linear variable differential transformer
  • 3.3.2 Linear variable inductive transducer
  • 3.3.3 The inductosyn
  • 3.3.4 Inductive velocity transducers
  • 3.4 Thermoelectric transducers
  • 3.5 Resonant transducers
  • 3.5.1 Vibrating wire transducers
  • 3.5.2 Vibrating beam transducers
  • 3.5.3 Vibrating cylinder transducers
  • 4 Optical measurement systems
  • 4.1 Radiant energy sources
  • 4.1.1 Incandescent lamps
  • 4.1.2 Discharge lamps
  • 4.1.3 Light emitting diodes
  • 4.1.4 Lasers
  • 4.1.5 Illumination
  • 4.2 Photodetectors
  • 4.2.1 Thermal photodetectors
  • 4.2.2 Quantum photodetectors
  • 4.2.3 Array detectors
  • 4.3 Vision systems
  • 4.3.1 Image processing
  • 4.4 Laser scanning
  • 4.5 Fibre optic transducers
  • 4.5.1 Intensity modulation
  • 4.5.2 Phase modulation
  • 4.5.3 Modulation of the angle of polarization
  • 4.5.4 Modulation of wavelength and spectral distribution
  • 4.6 Non-fibre optical transducers
  • 4.6.1 Optical encoders
  • 4.6.2 Tactile sensing
  • 4.6.3 Triangulation
  • 5 Solid state sensors and transducers
  • 5.1 Magnetic measurements
  • 5.1.1 Hall effect
  • 5.1.2 Magnetoresistor
  • 5.1.3 Magnetodiode
  • 5.1.4 Magnetotransistor
  • 5.2 Temperature measurements
  • 5.2.1 Thermistor
  • 5.2.2 Thermodiodes and thermotransistors
  • 5.2.3 Seebeck effect devices
  • 5.2.4 Solid state pyrometers
  • 5.3 Mechanical measurements
  • 5.3.1 Strain
  • 5.3.2 Force
  • 5.4 Chemical measurements
  • 5.4.1 Humidity
  • 5.4.2 Gas detectors
  • 6 Piezoelectric and ultrasonic sensors and transducers
  • 6.1 Piezoelectric devices
  • 6.1.1 Accelerometers
  • 6.1.2 Humidity measurement
  • 6.1.3 Surface acoustic wave devices
  • 6.1.4 Light modulation
  • 6.1.5 Piezoelectric actuators
  • 6.2 Ultrasonic systems
  • 6.2.1 Sources
  • 6.2.2 Coupling of the source
  • 6.2.3 Receivers
  • 6.2.4 Ultrasonic flow measurement
  • 6.2.5 Ultrasonic distance measurement
  • 6.2.6 Ultrasonic measurement using variation in transmission velocity
  • 6.2.7 Ultrasonic imaging
  • 7 Interference and noise in measurement
  • 7.1 Interference
  • 7.1.1 Common mode rejection ratio
  • 7.1.2 Ground or earth loops
  • 7.1.3 Electrostatic interference: screening and guarding
  • 7.1.4 Electromagnetic interference
  • 7.1.5 Power supplies as a source of interference
  • 7.2 Noise
  • 7.2.1 White and coloured noise
  • 7.2.2 Sources of noise
  • 7.2.3 Noise factor
  • 7.2.4 Signal-to-noise ratio
  • 8 Signal processing
  • 8.1 Operational amplifiers
  • 8.1.1 Integrator
  • 8.1.2 Buffer amplifier
  • 8.1.3 Current to voltage converter
  • 8.1.4 Voltage to current converter
  • 8.1.5 Logarithmic amplifier
  • 8.1.6 Charge amplifier
  • 8.1.7 Differential amplifier
  • 8.1.8 Comparator
  • 8.1.9 Schmitt trigger amplifier
  • 8.2 Practical operational amplifiers
  • 8.2.1 Amplifier errors
  • 8.2.2 Chopper stabilized amplifiers
  • 8.2.3 Auto-zeroing amplifier
  • 8.3 Signal isolation
  • 8.3.1 Isolation amplifier
  • 8.3.2 Opto-isolation
  • 8.3.3 Transformer isolation
  • 8.4 Phase sensitive detector
  • 8.4.1 Phase locked loop
  • 8.5 Multiplexing
  • 8.5.1 Time division multiplexing
  • 8.5.2 Frequency division multiplexing
  • 8.6 Filters
  • 8.6.1 Analogue filters
  • 8.6.2 Digital filters: the sampling theorem
  • 8.6.3 Pre-processing and post-processing filters
  • 8.7 Digital signal processing
  • 8.7.1 Analogue to digital and digital to analogue conversion
  • 8.7.2 Signal analysis
  • 8.8 Smart sensors
  • 8.9 Expert systems, artificial intelligence and measurement
  • Part Two Embedded Microprocessor Systems
  • 9 Microprocessors in mechatronic systems
  • 9.1 Embedded real-time microprocessor systems
  • 9.2 The mechatronic system
  • 10 The microprocessor system
  • 10.1 The system components
  • 10.2 The system bus
  • 10.3 The memory map
  • 10.4 The microprocessor bus operation
  • 11 The central processing unit
  • 11.1 CPU operation: the fetch phase
  • 11.1.1 The program counter
  • 11.1.2 The stack pointer
  • 11.1.3 Instruction decode and control
  • 11.1.4 Microcoded instruction decode and control
  • 11.1.5 Hard wired control units
  • 11.2 CPU operation: the execution phase
  • 11.2.1 The arithmetic and logic unit and the accumulator
  • 11.2.2 The processor status register
  • 11.2.3 The register bank
  • 11.3 Interrupt processing
  • 11.3.1 Register stacking and context switching
  • 11.3.2 Systems with multiple interrupt sources
  • 11.3.3 Non-vectored interrupts
  • 11.3.4 Vectored interrupts
  • 11.3.5 Multiple interrupt processing
  • 11.3.6 Non-maskable interrupts and CPU reset
  • 11.4 The central processor unit instruction set
  • 11.5 Addressing modes
  • 11.5.1 Immediate addressing
  • 11.5.2 Direct addressing
  • 11.5.3 Paged addressing
  • 11.5.4 Indirect addressing
  • 11.5.5 Indexed addressing
  • 11.5.6 Relative addressing
  • 11.5.7 Stack addressing
  • 11.6 CISC and RISC instruction sets
  • 12 Semiconductor memory, input and output, and peripheral circuits
  • 12.1 Semiconductor memory devices
  • 12.1.1 Read only memory
  • 12.1.2 Read/write memories
  • 12.2 Input and output devices
  • 12.2.1 Parallel I/O
  • 12.2.2 Interrupt support
  • 12.2.3 Data transfer using handshaking
  • 12.2.4 Serial I/O
  • 12.2.5 Analogue to digital and digital to analogue converters
  • 12.3 Peripheral circuits
  • 12.3.1 Programmable counter/timers
  • 12.3.2 Direct memory access
  • 12.3.3 Interrupt controllers
  • 12.4 Coprocessors
  • 12.5 Microprocessor types
  • 12.5.1 Microcontrollers
  • 12.5.2 Example: the National Semiconductor HPC16083 microcontroller
  • 12.5.3 Digital signal processors
  • 13 Semi-custom devices, programmable logic and device technology
  • 13.1 Application specific integrated circuits
  • 13.1.1 Gate arrays
  • 13.1.2 Standard cell and functional block ASICs
  • 13.1.3 Analogue ASICs
  • 13.2 Programmable logic devices
  • 13.2.1 The programmable read only memory
  • 13.2.2 The programmable logic array
  • 13.2.3 Programmable array logic
  • 13.2.4 Programming and reprogramming programmable logic devices
  • 13.3 Semiconductor technologies
  • 13.3.1 Some important characteristics
  • 13.3.2 MOS technologies
  • 13.3.3 Bipolar technologies
  • 14 The development of microprocessor systems
  • 14.1 The system specification
  • 14.2 The development environment
  • 14.3 The development cycle
  • 14.3.1 The editor: entering the source program
  • 14.3.2 Compilation and assembly: the generation of object code
  • 14.3.3 Linking: relocatable and absolute object code
  • 14.3.4 Object code libraries
  • 14.3.5 Emulation and debugging
  • 14.4 Assemblers, linkers and assembly language
  • 14.4.1 An assembler program example
  • 14.5 High level programming languages and compilers
  • 14.6 The real-time multitasking executive
  • 14.6.1 Tasks and task scheduling
  • 14.6.2 Intertask communications and synchronization
  • 14.6.3 Timing
  • 14.6.4 Memory manager
  • 14.6.5 An application example
  • 15 Communications
  • 15.1 Control and communication system hierarchies
  • 15.2 Local area networks
  • 15.2.1 Standards and the communication system reference model
  • 15.2.2 LAN standards
  • 15.2.3 LAN topology
  • 15.2.4 LAN frame structure and medium access techniques
  • 15.3 A communications system hierarchy for industrial automation applications
  • 15.3.1 The manufacturing automation protocol
  • 15.3.2 The enhanced performance architecture (EPA) MAP
  • 15.3.3 Fieldbus
  • Part Three Motion Control
  • 16 Drives and Actuators
  • 17 Control devices
  • 17.1 Electrohydraulic control devices
  • 17.1.1 Flapper controlled electrohydraulic servovalve
  • 17.1.2 Proportional solenoid Controlled Electrodynamic Value
  • 17.1.3 Simple flapper orifice
  • 17.2 Electropneumatic proportional controls
  • 17.2.1 Direct proportional controls for pressure and flow
  • 17.2.2 Pulse width modulation control of solenoid valves
  • 17.3 Control of electrical drives: power semiconductor devices
  • 17.3.1 Diodes
  • 17.3.2 Thyristors
  • 17.3.3 Gate turn-off thyristors
  • 17.3.4 Triacs
  • 17.3.5 Power transistors
  • 17.3.6 Power MOSFETs
  • 17.3.7 Insulated gate bipolar transistors
  • 17.3.8 Smart power devices
  • 17.3.9 Heat transfer and cooling
  • 17.3.10 Protection
  • 17.4 Converters, choppers, inverters and cycloconverters
  • 17.4.1 Naturally commutated thyristor converters
  • 17.4.2 DC choppers
  • 17.4.3 Inverters
  • 17.4.4 Cycloconverters
  • 18 Linear systems
  • 18.1 Pneumatic rams: rod type
  • 18.2 Pneumatic rams: rodless type
  • 18.3 Pneumatic diaphragms
  • 18.4 Pneumatic bellows
  • 18.5 Hydraulic cylinders
  • 18.6 Motor and ball screw
  • 18.7 Motor and leadscrew
  • 18.8 Direct linear electrical actuators
  • 18.9 Solenoids
  • 18.10 Other forms of electrical actuator
  • 19 Rotational drives
  • 19.1 Pneumatic motors: continuous rotation
  • 19.2 Pneumatic motors: limited rotation
  • 19.3 Hydraulic motors: continuous rotation
  • 19.3.1 Gear motors
  • 19.3.2 Vane motors
  • 19.3.3 Axial piston motors
  • 19.3.4 Radial piston motors
  • 19.3.5 General characteristics of rotational hydraulic transmissions
  • 19.4 Hydraulic motors: limited rotation
  • 19.5 Electrical motors
  • 19.5.1 DC machines
  • 19.5.2 DC variable speed drives
  • 19.5.3 DC servomotors
  • 19.5.4 Induction machines
  • 19.5.5 AC variable speed drives
  • 19.5.6 Stepper motors
  • 19.5.7 Synchronous machines
  • 19.5.8 Brushless machines
  • 19.5.9 Switched reluctance motors
  • 19.5.10 Toroidal torque motor
  • 19.5.11 Electrical variable speed drive characteristics
  • 20 Motion converters
  • 20.1 Fixed ratio motion converters
  • 20.1.1 Parallel shaft gears
  • 20.1.2 Epicyclic gears
  • 20.1.3 Harmonic drives
  • 20.1.4 Worm and bevel gears
  • 20.1.5 V belt drives
  • 20.1.6 Toothed belt drivers
  • 20.1.7 Chains and sprockets
  • 20.1.8 Friction wire wrap drives
  • 20.1.9 Rack and pinion
  • 20.1.10 Screw nut systems
  • 20.2 Motion converters with invariant motion profile
  • 20.2.1 Cams
  • 20.2.2 Indexing mechanisms
  • 20.2.3 Linkages
  • 20.2.4 Springs and dampers
  • 20.3 Variators (continuously variable transmissions)
  • 20.3.1 Conical pulley/disc systems
  • 20.3.2 Ball/disc friction drive systems
  • 20.3.3 Unit hydraulic transmissions
  • 20.4 Remotely controlled couplings
  • Part Four Case Studies
  • 21 Mechanical systems and design
  • 21.1 Tradition versus mechatronics
  • 21.2 The mechatronic approach
  • 21.2.1 Replacement of mechanisms
  • 21.2.2 Simplification of mechanisms
  • 21.2.3 Enhancement of mechanisms
  • 21.2.4 Synthesis of mechanisms
  • 21.3 Control
  • 21.3.1 Program control
  • 21.3.2 Adaptive control
  • 21.3.3 Distributed systems
  • 21.4 The design process
  • 21.4.1 Need
  • 21.4.2 Feasibility
  • 21.4.3 Specification
  • 21.4.4 Conceptual design
  • 21.4.5 Analysis and modelling
  • 21.4.6 Embodiment and optimization
  • 21.4.7 Detail design
  • 21.5 Types of design
  • 21.6 Integrated product design
  • 21.6.1 Project management
  • 21.6.2 Planning and implementation of facilities
  • 22 Mechanisms
  • 22.1 Load conditions
  • 22.1.1 Actuator requirements
  • 22.1.2 Attaining partial static balance
  • 22.1.3 Articulation requirements
  • 22.1.4 Speed versus accuracy
  • 22.1.5 Minimization of kinetic energy
  • 22.1.6 Power transmission over a distance
  • 22.1.7 Effects of assembly play and friction
  • 22.1.8 Inertia
  • 22.2 Design
  • 22.2.1 Materials
  • 22.2.2 Sizing of actuators
  • 22.3 Flexibility
  • 22.3.1 Resilience
  • 22.3.2 Backlash
  • 22.3.3 Vibration
  • 22.4 Modelling and simulation
  • 22.4.1 GRASP
  • 22.4.2 ADAMS/DRAMS
  • 23 Structures
  • 23.1 Load conditions
  • 23.1.1 Static loading
  • 23.1.2 Dynamic and cyclic loading
  • 23.1.3 Impulse and shock loading
  • 23.2 Flexibility
  • 23.2.1 Flexible structures
  • 23.2.2 Vibration effects
  • 23.2.3 Materials
  • 23.3 Environmental isolation
  • 23.4 Modelling
  • 23.5 Systems
  • 24 Man-machine interface
  • 24.1 Industrial design and ergonomics
  • 24.1.1 Aesthetics and style
  • 24.1.2 Ergonomics
  • 24.2 Information transfer: from machine to man
  • 24.2.1 Human responses to stimuli
  • 24.3 Information transfer: from man to machine
  • 24.4 Safety
  • 24.4.1 Operator safety
  • 24.4.2 System safety
  • Part Five Case Studies
  • 25 Introduction to case studies
  • 26 Canon EOS autofocus cameras
  • 26.1 Main microprocessor
  • 26.2 Exposure control
  • 26.2.1 Diaphragm drive system
  • 26.3 Autofocus
  • 26.3.1 The BASIS sensor
  • 26.3.2 Depth of field setting
  • 26.3.3 Focusing drives
  • 26.4 Lens microprocessor
  • 26.5 Film transport system
  • 27 Fly-by-wire
  • 27.1 The EAP systems architecture and flight control system
  • 27.2 The flight control computers
  • 27.3 MIL-STD-1553: a digital data transmission system for military applications
  • 28 British aerospace small parts flexible manufacturing system
  • 28.1 Billet preparation
  • 28.2 Steel and titanium parts
  • 28.3 Aluminium parts
  • 28.4 Control
  • 29 Autohelm 800 boat autopilot
  • Appendix A Definitions and terminology
  • Appendix B Inertial loads
  • B.1 Tangentially driven loads
  • B.1.1 Systems with a ratio change
  • B.2 Leadscrew driven loads
  • Bibliography
  • Index
Show More

Additional information

Veldu vöru

Rafbók til eignar

Aðrar vörur

0
    0
    Karfan þín
    Karfan þín er tómAftur í búð