Natural Hazards

Höfundur Ramesh P. Singh and Darius Bartlett

Útgefandi Taylor & Francis

Snið ePub

Print ISBN 9780367571917

Útgáfa 1

Útgáfuár 2018

7.790 kr.

Description

Efnisyfirlit

  • Cover
  • Half Title Page
  • Title Page
  • Copyright Page
  • Dedication
  • Contents
  • Foreword
  • Preface
  • Acknowledgements
  • Editors
  • Author
  • Chapter 1 Gujarat EarthquakeGround Deformation
  • 1.1 Introduction
  • 1.2 2001 Gujarat Earthquake: Ground Deformation Study
  • 1.3 Primary Deformation Structures
  • 1.3.1 Ground Fissures
  • 1.3.2 Monoclinal Humps, Mole Tracks and Tent Structures
  • 1.3.3 2001 Thrust Exposure in a Stream Bank (Faulted Quaternary Apron)
  • 1.3.4 Displacement Estimates
  • 1.3.5 Summary of Primary Surface Faulting
  • 1.4 Secondary Deformation Structures
  • 1.4.1 Off-Fault Co-Seismic Deformation
  • 1.4.2 Secondary Deformation Structures by Seismic Shaking
  • 1.4.3 Landslides: Lateral Spreads, Pressure Ridges and Sand Dykes at Budharmora
  • 1.4.3.1 Trench 1
  • 1.4.3.2 Trench 2
  • 1.4.4 Sand Dykes and Their Chronology at Budharmora
  • 1.4.5 Sand Blows in the Rann
  • 1.4.6 Ground Fissures and Extensional Cracks
  • 1.4.7 Ground Subsidence: Collapse of Ground
  • 1.4.8 Soft Sediment Deformation
  • 1.4.9 Sand Blow Craters
  • 1.4.10 Rockfalls and Shattered Hills
  • 1.4.11 Secondary Faults
  • 1.4.11.1 Manfara Fault
  • 1.4.11.1.1 Trenching at Manfara Fault
  • 1.4.11.1.1.1 Trench 1
  • 1.4.11.1.1.2 Trench 2
  • 1.4.11.1.1.3 Trench 3: Fault Stratigraphy and Age Determinations
  • 1.5 Conclusion
  • Acknowledgements
  • References
  • Chapter 2 Gujarat EarthquakeLiquefaction
  • 2.1 Introduction
  • 2.2 Liquefaction
  • 2.3 Kachchh Earthquakes and Liquefaction
  • 2.4 Observed Liquefaction and Sand Blows Associated with the Bhuj Earthquake
  • 2.4.1 Shallow Subsurface Study of Liquefaction in the Meizoseismal Area
  • 2.4.1.1 Shallow Pits and Liquefaction
  • 2.4.2 Liquefaction Studies Using GPR
  • 2.4.3 Morphology of Large Liquefaction Craters at Umedpar
  • 2.4.4 Trenching at Large Liquefaction Craters
  • 2.4.4.1 Trench 1
  • 2.4.4.2 Trench 2
  • 2.4.4.3 Trench 3
  • 2.5 Discussion
  • 2.6 Conclusion
  • Acknowledgements
  • References
  • Chapter 3 Earthquakes and Medical Complications
  • 3.1 Introduction
  • 3.2 Traumatic Injuries and Medical Complications in the First Week Post-Earthquake
  • 3.2.1 Musculoskeletal Injuries
  • 3.2.2 Renal Injuries
  • 3.2.3 Neurological Injuries
  • 3.2.4 Chest Injuries
  • 3.3 Medical Complications
  • 3.3.1 First Month Post-Earthquake
  • 3.3.1.1 Cardiovascular System
  • 3.3.1.2 Infectious Diseases
  • 3.3.1.3 Recovery from Musculoskeletal Injuries
  • 3.3.1.4 Recovery from Neurological Injuries
  • 3.3.2 Medical Complications in the First Year Post-Earthquake
  • 3.3.2.1 Mental Health
  • 3.4 Management of Pre-Existing Diseases in the Post-Earthquake Period
  • 3.4.1 Chronic Kidney Disease
  • 3.4.2 Non-Infectious Respiratory Disease
  • 3.5 Medical Complications for Earthquake Responders
  • 3.6 Donated Medical Supplies
  • 3.7 Conclusion
  • References
  • Chapter 4 Utilization of Satellite Geophysical Data as Precursors for Earthquake Monitoring
  • 4.1 Introduction
  • 4.2 Surface Temperature Anomalies Over Gujarat, India, and Their Possible Correlation with Earthquake Occurrences
  • 4.2.1 Thermal Precursor
  • 4.2.2 Surface Temperature Data from Thermal Infrared
  • 4.2.3 Geology of the Study Area
  • 4.2.3.1 Kachchh Region
  • 4.2.4 Image Data Source
  • 4.2.4.1 Earthquake Occurrences in Gujarat during January–April 2006
  • 4.3 Methodology
  • 4.3.1 Geometric Correction of NOAA AVHRR Data
  • 4.3.2 Calibration of AVHRR Data
  • 4.3.3 Retrieval of Brightness Temperature
  • 4.3.4 Retrieval of Land Surface Temperature
  • 4.3.5 Atmospheric Attenuation Correction for Retrieving Surface Temperature
  • 4.4 Results
  • 4.5 Discussions
  • 4.6 Gravity Precursor Over Land
  • 4.6.1 Data Sources and the Study Area of Interest
  • 4.7 Methodology
  • 4.7.1 Gravity Anomaly Modelling Using Geoid
  • 4.8 Results and Discussion
  • 4.9 Gravity Precursors Over Ocean
  • 4.9.1 Data Sources and Study Area
  • 4.9.2 Methodology
  • 4.9.2.1 Crossover Analysis
  • 4.9.2.2 Deeper Earth Effects in Geoid
  • 4.9.3 Results and Discussion
  • 4.9.3.1 Study of Oceanic Processes Over the Sumatran Earthquake Region
  • 4.9.3.2 Study of Gravity Signatures
  • 4.10 Study of Andaman Swarm Using Grace Geoid Anomalies
  • 4.10.1 Results and Discussion
  • 4.11 Overall Conclusion
  • Acknowledgements
  • References
  • Chapter 5 Satellite Radar Imaging and Its Application to Natural Hazards
  • 5.1 Introduction
  • 5.2 What Does Radar Measure that is Useful for Natural Hazards?
  • 5.3 Change in the Amplitude of the Radar Signal
  • 5.4 Change in the Distance from Satellite to Ground: Interferometry
  • 5.5 Along-Track Displacement and Subpixel Movements
  • 5.6 Changes in Topography: Digital Elevation Models
  • 5.7 Coherence Change
  • 5.8 Practical Considerations: What Data Type Will Be of Most Utility?
  • 5.8.1 Data Availability
  • 5.8.2 Data Latency
  • 5.9 Conclusion
  • Acknowledgements
  • References
  • Chapter 6 DEMETER Satellite and Detection of Earthquake Signals
  • 6.1 Introduction
  • 6.2 DEMETER Mission
  • 6.2.1 Scientific Payload
  • 6.2.2 Constraints
  • 6.2.2.1 EMC Constraints
  • 6.2.2.2 Constraints on the Mission
  • 6.2.3 Data Processing
  • 6.2.4 Orbit
  • 6.3 Examples of Particular Events
  • 6.4 Statistical Analysis
  • 6.4.1 Statistic with the Electric Field in the VLF Range
  • 6.4.2 Statistic with the Electron Density
  • 6.4.3 Statistic with the Ion Density
  • 6.4.4 Discussions about the Statistics
  • 6.5 Is It Possible to Predict EQs?
  • 6.5.1 The Magnitude 8.8 Chile EQ
  • 6.5.2 A Prediction Attempt
  • 6.6 Conclusion
  • Acknowledgements
  • References
  • Chapter 7 TIR Anomaly as Earthquake Precursor
  • 7.1 Introduction
  • 7.2 Origin of Thermal Anomalies
  • 7.2.1 Gas and Vapours
  • 7.2.2 Seismoelectromagnetic and Seismoelectric Effects
  • 7.2.3 Extension of Thermal Anomalies
  • 7.3 Advances in TIR Precursor Studies
  • 7.3.1 Deviation–Time–Space–Thermal Criteria
  • 7.3.2 Night Thermal Gradient
  • 7.3.3 Spatial Features Linked to Thermal Anomalies
  • 7.4 Conclusion
  • References
  • Chapter 8 Stress Change and Earthquake Triggering by ReservoirsRole of Fluids
  • 8.1 Introduction
  • 8.2 RTS: A Brief Historical Account
  • 8.3 Factors Influencing RTS
  • 8.3.1 Pre-Existing or In Situ Stress
  • 8.3.2 Geological and Hydrological Conditions
  • 8.3.3 Reservoirs
  • 8.4 Mechanism of Reservoir-Triggered Earthquakes
  • 8.4.1 Reservoir Water Load and Pore Pressure
  • 8.4.2 Porous Elastic Solid and Theoretical Analyses
  • 8.5 Concept of Coulomb Stress and Fault Stability in RTS
  • 8.5.1 Magnitudes of Reservoir-Triggered Earthquakes and Triggering Threshold
  • 8.6 Application of the Concept of the Porous Elastic Theory and Coulomb Stress in RTS: Detailed Case Histories
  • 8.6.1 RTS due to Rihand Reservoir, Central India
  • 8.6.2 RTS due to Aswan Reservoir, Egypt
  • 8.6.3 RTS due to Koyna Reservoir, Western Peninsular India
  • 8.6.4 Impoundment of Zipingpu Reservoir and 2008 Wenchuan Earthquake
  • 8.6.5 Tarbela Reservoir
  • 8.6.6 Açu Reservoir
  • 8.7 Conclusion
  • References
  • Chapter 9 Earthquake Precursory Studies in India An Integrated Approach
  • 9.1 Introduction
  • 9.2 Tectonics and Seismic Tracks in the Indian Subcontinent
  • 9.3 Earthquake Precursors
  • 9.4 Progression Path of Earthquake Precursory Research in India
  • 9.4.1 Early Leads
  • 9.4.1.1 Seismological Precursors
  • 9.4.1.1.1 Long-Term Precursors
  • 9.4.1.1.2 Medium- and Short-Term Precursors
  • 9.4.2 Geophysical and Geodetic Precursors
  • 9.4.2.1 Geomagnetic and Geoelectric Precursors
  • 9.4.2.2 Atmospheric and Ionospheric Precursors
  • 9.4.2.3 Thermal Anomalies
  • 9.4.3 Geochemical and Hydrological Precursors
  • 9.5 Organized Approach to Precursory Studies
  • 9.5.1 Multi-Parametric Geophysical Observatories: Establishment and Observations
  • 9.5.1.1 Ghuttu Observatory in Northwest Himalaya
  • 9.5.1.1.1 Kharsali Earthquake of 22 July 2007 (Mw 5.0)
  • 9.5.1.1.2 Radon Anomalies
  • 9.5.1.1.3 Gravity Field Variations
  • 9.5.1.1.4 Seismomagnetic Signals
  • 9.5.2 Multiparametric Geophysical Observations in the Koyna Region
  • 9.6 Koyna Deep Borehole Investigations
  • 9.6.1 Idea of Deep Borehole Drilling in Koyna
  • 9.6.2 Preliminary Investigations and Results
  • 9.6.3 Drilling of Pilot Borehole
  • 9.7 Earthquake Early Warning in India
  • 9.7.1 Principle and Importance of EEW System
  • 9.7.1.1 Experimental EEW System in Northern India
  • 9.8 Conclusion
  • Acknowledgements
  • References
  • Chapter 10 Geomorphic Features Associated with Erosion
  • 10.1 Introduction
  • 10.2 Geomorphological Factors Affecting Erosion
  • 10.2.1 Climate
  • 10.2.2 Rock
  • 10.2.3 Morphology
  • 10.2.4 Land Use
  • 10.3 Types of Erosion
  • 10.3.1 Water Erosion
  • 10.3.2 Raindrop Erosion
  • 10.3.3 Sheet Erosion
  • 10.3.4 Rill and Interrill Erosion
  • 10.3.5 Ephemeral Stream Erosion
  • 10.3.6 Permanent, Incised Gully Erosion
  • 10.3.7 Riverbed Erosion
  • 10.3.8 Bank Erosion
  • 10.3.9 Erosion via Porosity
  • 10.3.10 Erosion due to Snowmelting
  • 10.3.11 Erosion due to Ice Crystal Development
  • 10.3.12 Coastal Erosion
  • 10.3.12.1 Erosion due to Wave Action
  • 10.3.12.2 Erosion due to Currents
  • 10.3.12.3 Erosion due to Midlittoral Organisms
  • 10.3.12.4 Erosion due to Sea Level Rise
  • 10.3.12.5 Erosion due to Human-Made Constructions
  • 10.3.13 Wind Erosion
  • 10.3.14 Human-Made Erosion (Incensement of the Erosion Rate)
  • 10.3.15 Biological Erosion
  • 10.3.15.1 Erosion due to Root System Development
  • 10.3.15.2 Erosion due to Underground Living Organisms
  • 10.4 Erosion Landforms
  • 10.4.1 Water Erosion
  • 10.4.1.1 Stream Valleys
  • 10.4.1.2 Gorges
  • 10.4.1.3 Waterfalls
  • 10.4.1.4 Meanders
  • 10.4.1.5 Knickpoints
  • 10.4.1.6 Pot Holes
  • 10.4.1.7 Peneplane
  • 10.4.2 Coastal Erosion
  • 10.4.2.1 Coastal Caves
  • 10.4.2.2 Marmites
  • 10.4.2.3 Coastal Platforms
  • 10.4.2.4 Stacks
  • 10.4.2.5 Notches
  • 10.4.2.6 Sea Arches
  • 10.4.3 Glacier Erosion
  • 10.4.3.1 Glacial Striations
  • 10.4.3.2 Proglacial Channels
  • 10.4.3.3 Gelifluxion
  • 10.4.3.4 Glacial Debris
  • 10.4.3.5 Erratics
  • 10.4.3.6 Glacial Gorges
  • 10.4.3.7 Cirque
  • 10.4.3.8 Arete
  • 10.4.3.9 Horns
  • 10.4.4 Wind Erosion
  • 10.4.4.1 Aeolian Surface
  • 10.4.4.2 Aeolian Sand
  • 10.4.5 Karstic Erosion
  • 10.4.5.1 Fossil Karst
  • 10.4.5.2 Exhumation Karst
  • 10.4.5.3 Uncovered Karst
  • 10.4.5.4 Covered Karst
  • 10.4.6 Exokarstic Forms
  • 10.4.6.1 Dolines
  • 10.4.6.2 Closed Dolines
  • 10.4.6.3 Open Dolines
  • 10.4.6.4 Suffusion Dolines
  • 10.4.6.5 Uvala
  • 10.4.6.6 Polje
  • 10.4.6.7 Open Polje
  • 10.4.6.8 Sinkholes
  • 10.4.6.9 Estavelle
  • 10.4.6.10 Hum
  • 10.4.6.11 Karren, Sculpture
  • 10.4.6.12 Kuppen
  • 10.4.7 Endokarstic Forms
  • 10.4.7.1 Caves
  • 10.4.7.2 Karstic Springs
  • 10.4.7.3 Submarine Karstic Springs
  • 10.4.7.4 Spring Vauclusienne
  • 10.4.7.5 Karstic Holes
  • 10.5 Conclusion
  • References
  • Chapter 11 Thar DesertSource for Dust Storm
  • 11.1 Introduction
  • 11.2 Thar Desert
  • 11.3 Field Measurement of Dust Storms
  • 11.3.1 Dust Catcher
  • 11.3.2 Wind Erosion Sampler
  • 11.4 Procedure of Soil Loss Calculations
  • 11.4.1 Field Observations on Soil Loss through Wind Erosion
  • 11.5 Major Causative Factors
  • 11.5.1 Surface Cover Factor
  • 11.5.2 Weather Factor
  • 11.5.3 Wind Velocity Profile
  • 11.6 Potential Environmental Hazard of Eroded Soils
  • 11.6.1 Particulate Matter in Eroded Soil
  • 11.6.2 Nutrient Contents in Eroded Soil
  • 11.7 Dust Aerosol Monitoring Through Remote Sensing
  • 11.8 Control of Grazing and Reduction in Wind Erosion
  • 11.9 Conclusion
  • References
  • Chapter 12 Coastal SubsidenceCauses, Mapping and Monitoring
  • 12.1 Introduction
  • 12.2 Causes
  • 12.2.1 Natural Causes
  • 12.2.2 Isostasy
  • 12.2.3 Geostatic Load
  • 12.2.4 Shallow Subsidence
  • 12.2.5 Tectonic Subsidence
  • 12.2.6 Accommodation
  • 12.2.7 Anthropic Causes
  • 12.2.8 Pumping Activities
  • 12.2.9 Overloading
  • 12.2.10 Hydraulic Reclaim
  • 12.3 Subsidence Effects on Coastal Vegetation
  • 12.4 Measurement Technologies: Mapping and Monitoring
  • 12.4.1 Levelling
  • 12.4.2 Global Navigation Satellite Systems
  • 12.4.3 Extensometers
  • 12.4.4 LIDAR
  • 12.4.5 Photogrammetry by UAV
  • 12.4.6 SAR-Based Techniques
  • 12.4.7 Interferometric Point Target Analysis
  • 12.4.8 Small-Baseline Subset
  • 12.5 Example of Study Areas
  • 12.5.1 Rhine–Meuse Delta
  • 12.5.2 Southern Emilia Romagna
  • 12.5.3 Impact on Vegetation Species Richness along the Adriatic Coast
  • 12.5.4 Venice Area
  • 12.5.5 Wetland Plant Diversity and Subsidence in the North Sea (The Netherlands)
  • 12.6 Conclusion
  • References
  • Chapter 13 Subsidence Mapping Using InSAR
  • 13.1 Introduction
  • 13.2 InSAR and PSInSAR Methods
  • 13.2.1 InSAR
  • 13.2.2 Digital Elevation Model Generation
  • 13.2.3 Master-to-Slave Registration
  • 13.2.4 Resampling and Filtering
  • 13.2.5 Interferogram Generation
  • 13.2.6 Coherence Image Generation
  • 13.2.7 Phase Unwrapping
  • 13.2.8 Slant-to-Height Conversion
  • 13.2.9 Geocoding
  • 13.2.10 PSInSAR
  • 13.2.11 Permanent Scatterer Candidates
  • 13.3 Examples of Subsidence Mapping
  • 13.3.1 Mapping in Ganges–Brahmaputra Delta
  • 13.3.2 Mapping in Barcelona, Spain
  • 13.3.3 Mapping of Tungurahua Volcano, Ecuador
  • 13.4 Conclusion
  • Acknowledgements
  • References
  • Chapter 14 Earthquakes and Associated Landslides in Pakistan
  • 14.1 Introduction
  • 14.2 Tectonic Setting
  • 14.3 Pamir–Hindu Kush Seismotectonic Province
  • 14.4 Karakoram–Himalaya Seismotectonic Province
  • 14.4.1 Kashmir Himalayas–Indus–Kohistan Seismic Zone
  • 14.4.1.1 The 1974 Pattan Earthquake
  • 14.4.1.2 The 2005 Kashmir Earthquake
  • 14.4.2 Nanga Parbat Seismic Zone
  • 14.4.2.1 The 1840 Nanga Parbat Earthquake
  • 14.4.2.2 The 2002 Nanga Parbat Earthquake
  • 14.4.2.3 The 2010 Attabad Landslide
  • 14.4.3 Darel–Hamran Kohistan Seismic Zone
  • 14.5 Axial Belt Seismotectonic Province
  • 14.6 Makran Seismotectonic Province
  • 14.6.1 The 1945 Makran Earthquake
  • 14.7 Conclusion
  • Acknowledgements
  • References
  • Chapter 15 Landslides in JamaicaDistribution, Cause, Impact and Management
  • 15.1 Introduction
  • 15.2 Landslide Distribution at a National Scale
  • 15.3 Landslides in Jamaica: History and Impact
  • 15.4 Major Landslides and Slope Instability Events
  • 15.4.1 Millbank Landslide and Slope Instability in the Rio Grande Valley
  • 15.4.2 Jupiter Landslide
  • 15.5 Causes of Landslides: Preparatory and Triggers
  • 15.6 Preparatory Factors
  • 15.6.1 Geology
  • 15.6.2 Role of Pore Water Pressure within Geological Sequences
  • 15.6.3 Role of Rock Weathering
  • 15.6.4 Proximity to Faults
  • 15.6.5 Land Use
  • 15.7 Causes of Slope Instability Triggering
  • 15.7.1 Rainfall Triggering
  • 15.7.2 Rainfall Intensity and Duration
  • 15.7.3 Triggering by Earthquakes
  • 15.8 Response, Management Strategies and Critique
  • 15.9 Conclusion
  • References
  • Chapter 16 LandslidesCauses, Mapping and Monitoring – Examples from Malaysia
  • 16.1 Introduction
  • 16.2 Landslides in Malaysia
  • 16.3 Landslide Types
  • 16.3.1 Triggering Factor Assessment
  • 16.3.2 Monitoring
  • 16.3.2.1 Remote Sensing-Based Monitoring
  • 16.3.2.2 Field Monitoring
  • 16.3.2.3 Landslide Inventory Mapping
  • 16.4 Landslide Thematic Environmental Variables (Conditioning Factors)
  • 16.5 General Classification
  • 16.5.1 Qualitative Approaches
  • 16.5.2 Quantitative Approaches
  • 16.6 Landslide Susceptibility Modelling Approaches
  • 16.6.1 Frequency Ratio
  • 16.6.2 Evidential Belief Function
  • 16.6.3 Index of Entropy
  • 16.6.4 Artificial Neural Networks
  • 16.6.5 Logistic Regression
  • 16.6.6 Validation Process
  • 16.7 Landslides in Malaysia: Selangor Case Study
  • 16.7.1 Application of EBF Model in Landslide Susceptibility Mapping in Selangor
  • 16.7.2 Spatial Database Used
  • 16.7.3 Accuracy Assessment
  • 16.8 Conclusion
  • References
  • Chapter 17 Mapping and Monitoring of Landslides Using LIDAR
  • 17.1 Introduction
  • 17.2 LIDAR and LASER Scanning Techniques
  • 17.2.1 History
  • 17.2.2 Instrument Principle
  • 17.2.2.1 LIDAR Functioning
  • 17.2.2.2 Multiple Echoes
  • 17.2.2.3 Other Parameters: Intensity + Colour
  • 17.2.2.4 ALS versus TLS
  • 17.2.2.5 Spacing, Accuracy, Resolution and Data Types
  • 17.2.2.6 Data Acquisition Issues: Occlusion and Biases
  • 17.2.2.6.1 Occlusion
  • 17.2.2.6.2 Biases
  • 17.2.3 Data Treatment
  • 17.2.3.1 Full-Waveform and Automatic Filtering
  • 17.2.3.2 Non-Ground-Point Filtering (Including Vegetation Removal)
  • 17.2.3.3 Co-Registration and Georeferencing
  • 17.2.3.4 Point Cloud Comparison
  • 17.3 Landslide Applications
  • 17.3.1 Landslides
  • 17.3.2 Rock Slopes
  • 17.3.2.1 Structural Analysis
  • 17.3.2.2 Monitoring of Fragmental Rockfalls
  • 17.3.2.3 Rock Fall Susceptibility Assessment
  • 17.3.3 Debris Flows
  • 17.3.4 Input for Modelling
  • 17.4 Conclusion
  • Acknowledgements
  • References
  • Chapter 18 Radar Monitoring of Volcanic Activities
  • 18.1 Introduction
  • 18.2 Radar
  • 18.3 Synthetic Aperture Radar
  • 18.4 Interferometric Synthetic Aperture Radar
  • 18.4.1 InSAR Processing Flow
  • 18.5 Insar Products and their Applications to Volcanoes
  • 18.5.1 SAR Intensity Image
  • 18.5.2 InSAR Deformation Image and Source Parameters Derived from Modelling
  • 18.5.3 InSAR Coherence Image
  • 18.5.4 Digital Elevation Model
  • 18.6 Multi-Interferogram InSAR
  • 18.7 Conclusion
  • Acknowledgements
  • References
  • Chapter 19 Active VolcanoesSatellite Remote Sensing
  • 19.1 Introduction
  • 19.2 Satellite Remote Sensing of Active Volcanoes
  • 19.3 Thermal Activity
  • 19.3.1 Principles of Hotspot Detection from Space
  • 19.3.1.1 Hotspot Detection Algorithms
  • 19.3.2 Time-Series Analyses of Volcanic Hotspots
  • 19.3.3 Thermal Anomaly Characterization and Quantification
  • 19.4 Eruption Plumes
  • 19.4.1 Ash Cloud Detection and Tracking
  • 19.4.2 Plume Height
  • 19.4.3 Plume Gas Measurements
  • 19.5 Volcano Topography and Deformation
  • 19.5.1 Topography Measurement
  • 19.5.2 Deformation Measurements
  • 19.5.3 Deformation Time-Series Techniques
  • 19.6 Conclusion
  • References
  • Chapter 20 Application of Thermal Remote Sensing to the Observation of Natural Hazards
  • 20.1 Introduction
  • 20.2 Fundamental Concepts
  • 20.3 Satellite Imagery
  • 20.4 Natural Hazard Applications
  • 20.4.1 Volcanoes
  • 20.4.2 Wildfires
  • 20.4.3 Earthquakes
  • 20.4.4 Landslides
  • 20.4.5 Heat Waves
  • 20.4.6 Flooding
  • 20.4.7 Storms
  • 20.5 Prospects for the Future
  • 20.6 Conclusion
  • References
  • Index
Show More

Additional information

Veldu vöru

Rafbók til eignar

Aðrar vörur

0
    0
    Karfan þín
    Karfan þín er tómAftur í búð