Organic Chemistry

Höfundur Michael B. Smith

Útgefandi Taylor & Francis

Snið ePub

Print ISBN 9781032006161

Útgáfa 3

Útgáfuár 2022

21.090 kr.

Description

Efnisyfirlit

  • Cover
  • Half-Title
  • Title
  • Copyright
  • Dedication
  • Contents
  • Preface to the Third Edition
  • Common Abbreviations
  • Videos to Accompany the Third Edition
  • Scientist Photos and Acknowledgements
  • Infrared Spectra Reprinted from SBDS
  • Chapter 1 Introduction
  • 1.1 A Brief History of Organic Chemistry
  • 1.2 The Variety and Beauty of Organic Molecules
  • Chapter 2 Why Is an Acid–Base Theme Important?
  • 2.1 Traditional Acid and Base Theory
  • 2.2 There are Two Acid-Base Definitions: How Are They Related?
  • 2.3 Acid-Base Equilibria and Equilibrium Constants
  • 2.4 Electronegativity and Atom Size
  • 2.4.1 Electronegativity
  • 2.4.2 Atom Size
  • 2.5 Atom Size and Electronegativity Arguments Applied to Acids and Bases
  • 2.6 Resonance, Electron Dispersion, and Base Strength
  • 2.7 Lewis Acids and Bases
  • 2.8 Why Is Acid–Base Chemistry a Theme for Organic Chemistry?
  • 2.9 Biological Relevance
  • Chapter 3 Bonding
  • 3.1 Atomic Orbitals and Electrons
  • 3.1.1 Atomic Orbitals
  • 3.1.2 Electronic Configuration
  • 3.2 Ionic versus Covalent Chemical Bonds
  • 3.3 Covalent Bonds
  • 3.4 Linear Combination of Atomic Orbital (LCAO) Model
  • 3.5 Tetrahedral Carbons and sp3 Hybridization
  • 3.5.1 The Experimentally Determined Structure of Methane
  • 3.5.2 Electron Promotion and sp3 Hybridization
  • 3.5.3 The Hybrid Carbon Model of sp3-Hybrid Orbitals
  • 3.6 The Valence Shell Electron Pair Repulsion (VSEPR) Model
  • 3.7 Breaking Covalent Bonds
  • 3.8 Carbon Bonded to Heteroatoms
  • 3.8.1 A Covalent Bond Between Carbon and a Heteroatom: Bond Polarization
  • 3.8.2 Bond Polarity, Bond Moments, and Bond Strength
  • Chapter 4 Alkanes, Isomers, and an Introduction to Nomenclature
  • 4.1 Alkanes
  • 4.2 Structural Variations of Alkane Hydrocarbons
  • 4.2.1 Straight-Chain and Branched Alkanes
  • 4.2.2 Isomers
  • 4.3 The IUPAC Rules of Nomenclature
  • 4.3.1 Prefixes and Simple Alkanes
  • 4.3.2 Common Names
  • 4.3.3 Halogens are Substituents
  • 4.3.4 Multiple Substituents
  • 4.3.5 Complex Substituents
  • 4.4 Rings Made of Carbon: Cyclic Compounds
  • 4.5 The Acid or Base Properties of Alkanes
  • 4.6 Combustion Analysis and Empirical Formulas
  • 4.7 Commercial and Biological Relevance
  • Chapter 5 Functional Groups
  • 5.1 π-Bonds. The C=C Unit and Alkenes
  • 5.2 π-Bonds. The C≡C Unit and Alkynes
  • 5.3 Hydrocarbons With Several π-Bonds
  • 5.4 Terpenes
  • 5.5 Heteroatom Functional Groups
  • 5.5.1 Alcohols and Thiols
  • 5.5.2 Ethers and Dithioethers (Sulfides)
  • 5.5.3 Amines
  • 5.6 Functional Groups with Polarized π-Bonds
  • 5.6.1 The Carbonyl Functional Group, C=O
  • 5.6.2 Aldehydes and Ketones
  • 5.6.3 Carboxylic Acids, Carboxylic Anions, and Resonance
  • 5.6.4 Double and Triple Bonds to Nitrogen
  • 5.7 Acid-Base Properties of Functional Groups
  • 5.8 Physical Properties and Intermolecular Forces
  • 5.8.1 Boiling Point
  • 5.8.2 Solubility
  • 5.8.3 Melting Point
  • 5.9 Benzene: A Special Cyclic Hydrocarbon
  • 5.10 Biological Relevance
  • Chapter 6 Acids, Bases, and Nucleophiles
  • 6.1 Acid-Base Equilibria
  • 6.2 Carboxylic Acids and Sulfonic Acids
  • 6.2.1 Carboxylic Acids
  • 6.2.2 Sulfonic Acids
  • 6.3 Factors That Influence the Strength of a Carboxylic Acid
  • 6.3.1 Stability of the Conjugate Base
  • 6.3.2 Inductive Effects
  • 6.3.3 Solvent Effects
  • 6.4 Alcohols Are Amphoteric
  • 6.5 Amines
  • 6.6 Carbon Acids
  • 6.6.1 Terminal Alkynes Are Weak Acids
  • 6.6.2 α-Hydrogen Atoms and Carbonyls
  • 6.7 Organic Bases
  • 6.7.1 Amines
  • 6.7.2 Alcohols Are Bases
  • 6.7.3 Ethers Are Bases
  • 6.7.4 Carbonyl Compounds Are Bases
  • 6.7.5 Alkenes and Alkynes Are Bases
  • 6.8 Lewis Acids and Lewis Bases
  • 6.9 Nucleophiles
  • 6.10 Biological Relevance
  • Chapter 7 Chemical Reactions, Bond Energy, and Kinetics
  • 7.1 A Chemical Reaction
  • 7.2 Reactive Intermediates
  • 7.3 Formal Charge
  • 7.4 Free Energy: Enthalpy and Entropy
  • 7.5 Bond Dissociation Enthalpy and Reactions
  • 7.6 Transition States
  • 7.7 Competing Reactions
  • 7.8 Reversible Chemical Reactions
  • 7.9 Reaction Curves and Intermediates
  • 7.10 Mechanisms
  • 7.11 Kinetics
  • 7.11.1 Reaction Rate and First-Order Reactions
  • 7.11.2 Second-Order Reactions
  • 7.11.3 Half-Life
  • 7.11.4 No Reaction
  • 7.12 Biological Relevance
  • Chapter 8 Conformations
  • 8.1 Rotation Around C—C Bonds
  • 8.1.1 Staggered and Eclipsed Rotamers
  • 8.1.2 Torsional Strain: Steric Hindrance and Energy Barriers
  • 8.2 Longer Chain Alkanes
  • 8.3 Influence of Heteroatoms on the Rotamer Population
  • 8.3.1 Halogen Substituents
  • 8.3.2 OH or NH Groups in Alcohols or Amines
  • 8.4 Introducing π-Bonds
  • 8.5 Cyclic Alkanes
  • 8.5.1 Strain and Steric Hindrance in Cyclic Alkanes
  • 8.5.2 Conformations of C3–C5 Cycloalkanes
  • 8.5.3 Conformationally Mobile Cyclohexane
  • 8.6 Substituted Cyclohexanes. A1,3-Strain
  • 8.7 Large Rings
  • 8.8 Cyclic Alkenes
  • 8.9 Biological Relevance
  • Chapter 9 Stereoisomers: Chirality, Enantiomers, and Diastereomers
  • 9.1 Stereogenic Carbons and Stereoisomers
  • 9.2 Absolute Configuration [(R) and (S) Nomenclature]
  • 9.3 Specific Rotation: A Physical Property
  • 9.4 Circular Dichroism
  • 9.5 Diastereomers
  • 9.6 Alkenes
  • 9.7 Cis and Trans Substituents Attached to Rings
  • 9.8 Stereogenic Centers in Cyclic Molecules
  • 9.9 Bicyclic Molecules
  • 9.10 Optical Resolution
  • 9.11 Biological Relevance
  • Chapter 10 Acid-Base Reactions of π-Bonds: Addition Reactions
  • 10.1 Carbocation Stability
  • 10.2 Alkenes React with Brønsted-Lowry Acids
  • 10.3 Carbocation Rearrangements
  • 10.4 Hydration Reactions of Alkenes
  • 10.5 Alkenes React with Dihalogens
  • 10.5.1 Dihalogenation
  • 10.5.3 Reaction With Aqueous Solutions of Halogens (Hypohalous Acids)
  • 10.6 Alkenes React with Borane
  • 10.7 Alkenes React With Mercury(II) Compounds
  • 10.8 Alkynes React as Bases
  • 10.8.1 Reaction with Brønsted-Lowry Acids
  • 10.8.2 Hydration of Alkynes
  • 10.8.3 Dihalogenation of Alkynes
  • 10.8.4 Hydroboration of Alkynes
  • 10.8.5 Oxymercuration of Alkynes
  • 10.9 Metathesis
  • 10.10 Non-Ionic Reactions. Radical Reactions
  • 10.11 Polymerization
  • 10.12 Organization of Reaction Types
  • 10.13 Biological Relevance
  • Chapter 11 Substitution Reactions
  • 11.1 Alkyl Halides, Sulfonate Esters, and the Electrophilic C—X Bond
  • 11.2 The SN2 Reaction
  • 11.2.1 Nucleophilic Approach to an Electrophilic Carbon
  • 11.2.2 Reaction Rate and Energy Requirements
  • 11.2.3 The Role of the Solvent
  • 11.3 Functional Group Transformations via the SN2 Reaction
  • 11.4 The SN1 Reaction
  • 11.5 Substitution Reactions of Alcohols
  • 11.5.1 Alcohols React with Mineral Acids
  • 11.5.2 Sulfur and Phosphorous Halide Reagents
  • 11.5.3 The Mitsunobu Reaction
  • 11.6 Reactions of Ethers
  • 11.6.1 Ethers React as Brønsted-Lowry Bases
  • 11.6.2 Reactions of Epoxides
  • 11.7 Free Radical Halogenation of Alkanes
  • 11.8 C—H Substitution
  • 11.9 Organization of Reaction Types
  • 11.10 Biological Relevance
  • Chapter 12 Elimination and π–Bond-Forming Reactions
  • 12.1 Bimolecular Elimination
  • 12.2 Stereochemical Consequences of the E2 Reaction
  • 12.3 The E2 Reaction in Cyclic Molecules
  • 12.4 Unimolecular Elimination: The E1 Reaction
  • 12.5 Intramolecular Elimination
  • 12.6 Elimination Reactions of Vinyl Halides: Formation of Alkynes
  • 12.7 Substitution versus Elimination
  • 12.8 Strength and Limitations of the Simplifying Assumptions
  • 12.9 Organization of Reaction Types
  • 12.10 Biological Relevance
  • Chapter 13 Spectroscopic Methods of Identification
  • 13.1 Light and Energy
  • 13.2 Mass Spectrometry
  • 13.3 Infrared Spectroscopy
  • 13.3.1 Absorbing Infrared Light and the Infrared Spectrophotometer
  • 13.3.2 The Infrared Spectrum and Functional Group Absorptions
  • 13.4 Nuclear Magnetic Resonance Spectroscopy
  • 13.4.1 The Nuclear Magnetic Resonance Experiment
  • 13.4.2 The Proton NMR Spectrum
  • 13.5 Identifying Monofunctional Molecules
  • 13.6 Carbon-13 NMR Spectroscopy: Counting the Carbons
  • 13.7 Two-Dimensional (2D)-NMR
  • 13.8 Biological Relevance
  • Chapter 14 Organometallics
  • 14.1 Organomagnesium Compounds
  • 14.2 Grignard Reagents Are Bases and Nucleophiles
  • 14.3 Organolithium Reagents
  • 14.4 Organocuprates
  • 14.5 Other Organometallic Compounds
  • 14.6 Organization of Reaction Types
  • 14.7 Biological Relevance
  • Chapter 15 Oxidation
  • 15.1 Defining an Oxidation
  • 15.2 Oxidation of Alcohols
  • 15.2.1 Chromium (VI) Oxidation of Alcohols
  • 15.2.2 Swern Oxidation
  • 15.3 Dihydroxylation of Alkenes
  • 15.4 Epoxidation of Alkenes
  • 15.5 Oxidative Cleavage
  • 15.6 C—H Oxidation
  • 15.7 Organization of Reaction Types
  • 15.8 Biological Relevance
  • Chapter 16 Reactions of Aldehydes and Ketones
  • 16.1 Aldehydes and Ketones
  • 16.2 The Reaction of Ketones and Aldehydes with Strong Nucleophiles
  • 16.3 Stereoselectivity
  • 16.4 The Reaction of Ketones and Aldehydes with Weak Nucleophiles
  • 16.4.1 Reaction with Water
  • 16.4.2 Reaction with Alcohols
  • 16.4.3 Reaction With Amines
  • 16.5 Organization of Reaction Types
  • 16.6 Biological Relevance
  • Chapter 17 Reduction
  • 17.1 Defining a Reduction
  • 17.2 Hydride Reducing Agents
  • 17.3 Hydride Reduction of Other Functional Groups
  • 17.4 Catalytic Hydrogenation
  • 17.4.1 Hydrogenation of Alkenes and Alkynes
  • 17.4.2 Homogenous Hydrogenation
  • 17.4.3 Hydrogenation of Heteroatom Functional Groups
  • 17.5 Dissolving Metal Reductions
  • 17.6 Organization of Reaction Types
  • 17.7 Biological Relevance
  • Chapter 18 Carboxylic Acid Derivatives and Acyl Substitution
  • 18.1 Carboxylic Acids
  • 18.2 Carboxylic Acid Derivatives: Structure and Nomenclature
  • 18.3 Sulfonic Acids and Derivatives
  • 18.4 Acyl Substitution and Hydrolysis of Carboxylic Acid Derivatives
  • 18.5 Preparation of Acid Chlorides and Acid Anhydrides
  • 18.6 Preparation of Esters
  • 18.7 Baeyer-Villiger Oxidation
  • 18.8 Preparation of Amides
  • 18.9 Carboxylic Acid Derivatives React with Carbon Nucleophiles
  • 18.10 Dicarboxylic Acids and Derivatives
  • 18.11 Nitrate Esters, Sulfate Esters, and Phosphate Esters
  • 18.12 Nitriles Are Carboxylic Acid Derivatives
  • 18.13 Fatty Acids and Lipids
  • 18.14 Organization of Reaction Types
  • 18.15 Biological Relevance
  • Chapter 19 Aromatic Compounds and Benzene Derivatives
  • 19.1 Benzene and Aromaticity
  • 19.2 Substituted Benzene Derivatives
  • 19.2.1 Alkyl Substituents (Arenes)
  • 19.2.2 Functional Groups on the Benzene Ring
  • 19.3 Electrophilic Aromatic Substitution
  • 19.3.1 Aromatic Substitution: Halogenation, Nitration, and Sulfonation
  • 19.3.2 Friedel–Crafts Alkylation
  • 19.3.3 Friedel–Crafts Acylation
  • 19.4 Disubstituted Benzene Derivatives
  • 19.4.1 Regioselectivity
  • 19.4.2 Activating and Deactivating Substituents
  • 19.4.3 Halogen Substituents
  • 19.4.4 Aniline and Aniline Derivatives
  • 19.5 Polysubstituted Benzene Derivatives
  • 19.6 Aromatic Coupling Reactions
  • 19.7 Reduction and Aromatic Compounds
  • 19.8 Aromaticity in Monocyclic Molecules Other Than Benzene
  • 19.9 Polynuclear Aromatic Hydrocarbons
  • 19.9.1 Naphthalene, Anthracene, and Phenanthrene
  • 19.9.2 Aromatic Substitution Reactions of Polycyclic Hydrocarbons
  • 19.10 Nucleophilic Aromatic Substitution
  • 19.11 Aromatic Amines and Diazonium Salts
  • 19.12 Benzyne Intermediates
  • 19.13 Synthesis of Aromatic Compounds
  • 19.14 Spectroscopy of Aromatic Compounds
  • 19.15 Organization of Reaction Types
  • 19.16 Biological Relevance
  • Chapter 20 Enolate Anions: Acyl Addition and Acyl Substitution
  • 20.1 Aldehydes and Ketones Are Weak Acids
  • 20.1.1 Acidity of the α-Proton of Ketones and Aldehydes
  • 20.2 Nonnucleophilic Bases
  • 20.3 Enolate Alkylation
  • 20.4 The Aldol Condensation
  • 20.5 The Zimmerman-Traxler Model
  • 20.6 The Intramolecular Aldol Condensation
  • 20.7 The Acid-Catalyzed Aldol Condensation
  • 20.8 Ester Enolate Anions
  • 20.8.1 Alkylation of Ester Enolate Anions
  • 20.8.2 Acyl Substitution and Acyl Addition
  • 20.8.3 Intramolecular Condensation: The Dieckmann Condensation
  • 20.8.4 Malonic Ester Enolate Anions
  • 20.9 Decarboxylation
  • 20.10 The Knoevenagel Reaction, the Malonic Ester Synthesis, and the Acetoacetic Acid Synthesis
  • 20.11 Ylid Reactions
  • 20.12 Organization of Reaction Types
  • 20.13 Biological Relevance
  • Chapter 21 Difunctional Molecules: Dienes and Conjugated Carbonyl Compounds
  • 21.1 Conjugation
  • 21.2 General Principles of Photochemistry
  • 21.3 Detecting Conjugation with Spectroscopy
  • 21.4 Reactions of Conjugated π-Bonds
  • 21.5 Conjugate Addition
  • 21.6 Reduction of Conjugate Systems
  • 21.7 Organization of Reaction Types
  • 21.8 Biological Relevance
  • Chapter 22 Difunctional Molecules: Pericyclic Reactions
  • 22.1 The Diels-Alder Reaction
  • 22.2 Reactivity of Dienes and Alkenes
  • 22.3 Selectivity in the Diels-Alder Reaction
  • 22.4 Other Pericyclic Reactions
  • 22.5 Sigmatropic Rearrangements
  • 22.6 Organization of Reaction Types
  • 22.7 Biological Relevance
  • Chapter 23 Heteroaromatic Compounds
  • 23.1 Nitrogen, Oxygen, and Sulfur in an Aromatic Ring
  • 23.2 Substitution Reactions in Monocyclic Heterocyclic Aromatic Compounds
  • 23.3 Heteroaromatic Compounds With More Than One Ring
  • 23.4 Aromatic Substitution Reactions of Polycyclic Heterocycles
  • 23.5 Reduced Heterocycles
  • 23.6 Alkaloids
  • 23.7 Biological Relevance
  • Chapter 24 Multifunctional Compounds: Amines, Amino Acids and Peptides
  • 24.1 Reactions That Form Amines
  • 24.2 Amino Acids
  • 24.3 Reactions and Synthesis of α-Amino Acids
  • 24.4 Biological Relevance: Peptides
  • 24.5 Biological Relevance: Proteins
  • 24.6 Biological Relevance: Enzymes
  • 24.7 Combinatorial Methods
  • 24.8 Amino Acid Residue Identification in Proteins
  • 24.9 End Group Analysis
  • 24.10 Biological Relevance: Hormones
  • Chapter 25 Multifunctional Compounds: Carbohydrates
  • 25.1 Polyhydroxy Carbonyl Compounds
  • 25.1.1 Monosaccharides
  • 25.1.2 Hemi-Acetals
  • 25.1.3 The Anomeric Effect
  • 25.1.4 Ketose Monosaccharides
  • 25.1.5 Amino Sugars
  • 25.2 Disaccharides, Trisaccharides, Oligosaccharides, and Polysaccharides
  • 25.3 Reactions of Carbohydrates
  • 25.4 Glycans and Glycosides
  • 25.5 Biological Relevance: Nucleosides and Nucleotides
  • 25.6 Biological Relevance: Polynucleotides
  • Index
Show More

Additional information

Veldu vöru

Rafbók til eignar

Reviews

There are no reviews yet.

Be the first to review “Organic Chemistry”

Netfang þitt verður ekki birt. Nauðsynlegir reitir eru merktir *

Aðrar vörur

0
    0
    Karfan þín
    Karfan þín er tómAftur í búð