Description
Efnisyfirlit
- Front End Paper
- Title Page
- Copyright Page
- About the Author
- Preface to the Instructor
- Acknowledgments
- Preface to the Student
- Contents
- Part I: Newton’s Laws
- Overview: Why Things Change
- Chapter 1: Concepts of Motion
- 1.1. Motion Diagrams
- 1.2. Models and Modeling
- 1.3. Position, Time, and Displacement
- 1.4. Velocity
- 1.5. Linear Acceleration
- 1.6. Motion in One Dimension
- 1.7. Solving Problems in Physics
- 1.8. Unit and Significant Figures
- Summary
- Questions and Problems
- Chapter 2: Kinematics in One Dimension
- 2.1. Uniform Motion
- 2.2. Instantaneous Velocity
- 2.3. Finding Position from Velocity
- 2.4. Motion with Constant Acceleration
- 2.5. Free Fall
- 2.6. Motion on an Inclined Plane
- 2.7. Advanced Topic: Instantaneous Acceleration
- Summary
- Questions and Problems
- Chapter 3: Vectors and Coordinate Systems
- 3.1. Scalars and Vectors
- 3.2. Using Vectors
- 3.3. Coordinate Systems and Vector Components
- 3.4. Unit Vectors and Vector Algebra
- Summary
- Questions and Problems
- Chapter 4: Kinematics in Two Dimensions
- 4.1. Motion in Two Dimensions
- 4.2. Projectile Motion
- 4.3. Relative Motion
- 4.4. Uniform Circular Motion
- 4.5. Centripetal Acceleration
- 4.6. Nonuniform Circular Motion
- Summary
- Questions and Problems
- Chapter 5: Force and Motion
- 5.1. Force
- 5.2. A Short Catalog of Forces
- 5.3. Identifying Forces
- 5.4. What Do Forces Do?
- 5.5. Newton’s Second Law
- 5.6. Newton’s First Law
- 5.7. Free-Body Diagrams
- Summary
- Questions and Problems
- Chapter 6: Dynamics I: Motion Along a Line
- 6.1. The Equilibrium Model
- 6.2. Using Newton’s Second Law
- 6.3. Mass, Weight, and Gravity
- 6.4. Friction
- 6.5. Drag
- 6.6. More Examples of Newton’s Second Law
- Summary
- Questions and Problems
- Chapter 7: Newton’s Third Law
- 7.1. Interacting Objects
- 7.2. Analyzing Interacting Objects
- 7.3. Newton’s Third Law
- 7.4. Ropes and Pulleys
- 7.5. Examples of Interacting-Object Problems
- Summary
- Questions and Problems
- Chapter 8: Dynamics II: Motion in a Plane
- 8.1. Dynamics in Two Dimensions
- 8.2. Uniform Circular Motion
- 8.3. Circular Orbits
- 8.4. Reasoning About Circular Motion
- 8.5. Nonuniform Circular Motion
- Summary
- Questions and Problems
- Knowledge Structure: Part I: Newton’s Laws
- Part II: Conservation Laws
- Overview: Why Some Things Don’t Change
- Chapter 9: Work and Kinetic Energy
- 9.1. Energy Overview
- 9.2. Work and Kinetic Energy for a Single Particle
- 9.3. Calculating the Work Done
- 9.4. Restoring Forces and the Work Done by a Spring
- 9.5. Dissipative Forces and Thermal Energy
- 9.6. Power
- Summary
- Questions and Problems
- Chapter 10: Interactions and Potential Energy
- 10.1. Potential Energy
- 10.2. Gravitational Potential Energy
- 10.3. Elastic Potential Energy
- 10.4. Conservation of Energy
- 10.5. Energy Diagrams
- 10.6. Force and Potential Energy
- 10.7. Conservative and Nonconservative Forces
- 10.8. The Energy Principle Revisited
- Summary
- Questions and Problems
- Chapter 11: Impulse and Momentum
- 11.1. Momentum and Impulse
- 11.2. Conservation of Momentum
- 11.3. Collisions
- 11.4. Explosions
- 11.5. Momentum in Two Dimensions
- 11.6. Advanced Topic: Rocket Propulsion
- Summary
- Questions and Problems
- Knowledge Structure: Part II: Conservation Laws
- Part III: Applications of Newtonian Mechanics
- Overview: Power Over Our Environment
- Chapter 12: Rotation of a Rigid Body
- 12.1. Rotational Motion
- 12.2. Rotation About the Center of Mass
- 12.3. Rotational Energy
- 12.4. Calculating Moment of Inertia
- 12.5. Torque
- 12.6. Rotational Dynamics
- 12.7. Rotation About a Fixed Axis
- 12.8. Static Equilibrium
- 12.9. Rolling Motion
- 12.10. The Vector Description of Rotational Motion
- 12.11. Angular Momentum
- 12.12. Advanced Topic: Precession of a Gyroscope
- Summary
- Questions and Problems
- Chapter 13: Newton’s Theory of Gravity
- 13.1. A Little History
- 13.2. Isaac Newton
- 13.3. Newton’s Law of Gravity
- 13.4. Little g and Big G
- 13.5. Gravitational Potential Energy
- 13.6. Satellite Orbits and Energies
- Summary
- Questions and Problems
- Chapter 14: Fluids and Elasticity
- 14.1. Fluids
- 14.2. Pressure
- 14.3. Measuring and Using Pressure
- 14.4. Buoyancy
- 14.5. Fluid Dynamics
- 14.6. Elasticity
- Summary
- Questions and Problems
- Knowledge Structure: Part III: Applications of Newtonian Mechanics
- Part IV: Oscillations and Waves
- Overview: The Wave Model
- Chapter 15: Oscillations
- 15.1. Simple Harmonic Motion
- 15.2. SHM and Circular Motion
- 15.3. Energy in SHM
- 15.4. The Dynamics of SHM
- 15.5. Vertical Oscillations
- 15.6. The Pendulum
- 15.7. Damped Oscillations
- 15.8. Driven Oscillations and Resonance
- Summary
- Questions and Problems
- Chapter 16: Traveling Waves
- 16.1. The Wave Model
- 16.2. One-Dimensional Waves
- 16.3. Sinusoidal Waves
- 16.4. Advanced Topic: The Wave Equation on a String
- 16.5. Sound and Light
- 16.6. Advanced Topic: The Wave Equation in a Fluid
- 16.7. Waves in Two and Three Dimensions
- 16.8. Power, Intensity, and Decibels
- 16.9. The Doppler Effect
- Summary
- Questions and Problems
- Chapter 17: Superposition
- 17.1. The Principle of Superposition
- 17.2. Standing Waves
- 17.3. Standing Waves on a String
- 17.4. Standing Sound Waves and Musical Acoustics
- 17.5. Interference in One Dimension
- 17.6. The Mathematics of Interference
- 17.7. Interference in Two and Three Dimensions
- 17.8. Beats
- Summary
- Questions and Problems
- Knowledge Structure: Part IV: Oscillations and Waves
- Part V: Thermodynamics
- Overview: It’s All About Energy
- Chapter 18: A Macroscopic Description of Matter
- 18.1. Solids, Liquids, and Gases
- 18.2. Atoms and Moles
- 18.3. Temperature
- 18.4. Thermal Expansion
- 18.5. Phase Changes
- 18.6. Ideal Gases
- 18.7. Ideal-Gas Processes
- Summary
- Questions and Problems
- Chapter 19: Work, Heat, and the First Law of Thermodynamics
- 19.1. It’s All About Energy
- 19.2. Work in Ideal-Gas Processes
- 19.3. Heat
- 19.4. The First Law of Thermodynamics
- 19.5. Thermal Properties of Matter
- 19.6. Calorimetry
- 19.7. The Specific Heats of Gases
- 19.8. Heat-Transfer Mechanisms
- Summary
- Questions and Problems
- Chapter 20: The Micro/Macro Connection
- 20.1. Molecular Speeds and Collisions
- 20.2. Pressure in a Gas
- 20.3. Temperature
- 20.4. Thermal Energy and Specific Heat
- 20.5. Thermal Interactions and Heat
- 20.6. Irreversible Processes and the Second Law of Thermodynamics
- Summary
- Questions and Problems
- Chapter 21: Heat Engines and Refrigerators
- 21.1. Turning Heat into Work
- 21.2. Heat Engines and Refrigerators
- 21.3. Ideal-Gas Heat Engines
- 21.4. Ideal-Gas Refrigerators
- 21.5. The Limits of Efficiency
- 21.6. The Carnot Cycle
- Summary
- Questions and Problems
- Knowledge Structure: Part V: Thermodynamics
- Part VI: Electricity and Magnetism
- Overview: Forces and Fields
- Chapter 22: Electric Charges and Forces
- 22.1. The Charge Model
- 22.2. Charge
- 22.3. Insulators and Conductors
- 22.4. Coulomb’s Law
- 22.5. The Electric Field
- Summary
- Questions and Problems
- Chapter 23: The Electric Field
- 23.1. Electric Field Models
- 23.2. The Electric Field of Point Charges
- 23.3. The Electric Field of a Continuous Charge Distribution
- 23.4. The Electric Fields of Rings, Disks, Planes, and Spheres
- 23.5. The Parallel-Plate Capacitor
- 23.6. Motion of a Charged Particle in an Electric Field
- 23.7. Motion of a Dipole in an Electric Field
- Summary
- Questions and Problems
- Chapter 24: Gauss’s Law
- 24.1. Symmetry
- 24.2. The Concept of Flux
- 24.3. Calculating Electric Flux
- 24.4. Gauss’s Law
- 24.5. Using Gauss’s Law
- 24.6. Conductors in Electrostatic Equilibrium
- Summary
- Questions and Problems
- Chapter 25: The Electric Potential
- 25.1. Electric Potential Energy
- 25.2. The Potential Energy of Point Charges
- 25.3. The Potential Energy of a Dipole
- 25.4. The Electric Potential
- 25.5. The Electric Potential Inside a Parallel- Plate Capacitor
- 25.6. The Electric Potential of a Point Charge
- 25.7. The Electric Potential of Many Charges
- Summary
- Questions and Problems
- Chapter 26: Potential and Field
- 26.1. Connecting Potential and Field
- 26.2. Finding the Electric Field from the Potential
- 26.3. A Conductor in Electrostatic Equilibrium
- 26.4. Sources of Electric Potential
- 26.5. Capacitance and Capacitors
- 26.6. The Energy Stored in a Capacitor
- 26.7. Dielectrics
- Summary
- Questions and Problems
- Chapter 27: Current and Resistance
- 27.1. The Electron Current
- 27.2. Creating a Current
- 27.3. Current and Current Density
- 27.4. Conductivity and Resistivity
- 27.5. Resistance and Ohm’s Law
- Summary
- Questions and Problems
- Chapter 28: Fundamentals of Circuits
- 28.1. Circuit Elements and Diagrams
- 28.2. Kirchhoff’s Laws and the Basic Circuit
- 28.3. Energy and Power
- 28.4. Series Resistors
- 28.5. Real Batteries
- 28.6. Parallel Resistors
- 28.7. Resistor Circuits
- 28.8. Getting Grounded
- 28.9. RC Circuits
- Summary
- Questions and Problems
- Chapter 29: The Magnetic Field
- 29.1. Magnetism
- 29.2. The Discovery of the Magnetic Field
- 29.3. The Source of the Magnetic Field: Moving Charges
- 29.4. The Magnetic Field of a Current
- 29.5. Magnetic Dipoles
- 29.6. Ampère’s Law and Solenoids
- 29.7. The Magnetic Force on a Moving Charge
- 29.8. Magnetic Forces on Current-Carrying Wires
- 29.9. Forces and Torques on Current Loops
- 29.10. Magnetic Properties of Matter
- Summary
- Questions and Problems
- Chapter 30. Electromagnetic Induction
- 30.1. Induced Currents
- 30.2. Motional emf
- 30.3. Magnetic Flux
- 30.4. Lenz’s Law
- 30.5. Faraday’s Law
- 30.6. Induced Fields
- 30.7. Induced Currents: Three Applications
- 30.8. Inductors
- 30.9. LC Circuits
- 30.10. LR Circuits
- Summary
- Questions and Problems
- Chapter 31: Electromagnetic Fields and Waves
- 31.1. E or B? It Depends on Your Perspective
- 31.2. The Field Laws Thus Far
- 31.3. The Displacement Current
- 31.4. Maxwell’s Equations
- 31.5. Advanced Topic: Electromagnetic Waves
- 31.6. Properties of Electromagnetic Waves
- 31.7. Polarization
- Summary
- Questions and Problems
- Chapter 32: AC Circuits
- 32.1. AC Sources and Phasors
- 32.2. Capacitor Circuits
- 32.3. RC Filter Circuits
- 32.4. Inductor Circuits
- 32.5. The Series RLC Circuit
- 32.6. Power in AC Circuits
- Summary
- Questions and Problems
- Knowledge Structure: Part VI: Electricity and Magnetism
- Part VII: Optics
- Overview: The Story of Light
- Chapter 33: Wave Optics
- 33.1. Models of Light
- 33.2. The Interference of Light
- 33.3. The Diffraction Grating
- 33.4. Single-Slit Diffraction
- 33.5. Advanced Topic: A Closer Look at Diffraction
- 33.6. Circular-Aperture Diffraction
- 33.7. The Wave Model of Light
- 33.8. Interferometers
- Summary
- Questions and Problems
- Chapter 34: Ray Optics
- 34.1. The Ray Model of Light
- 34.2. Reflection
- 34.3. Refraction
- 34.4. Image Formation by Refraction at a Plane Surface
- 34.5. Thin Lenses: Ray Tracing
- 34.6. Thin Lenses: Refraction Theory
- 34.7. Image Formation with Spherical Mirrors
- Summary
- Questions and Problems
- Chapter 35: Optical Instruments
- 35.1. Lenses in Combination
- 35.2. The Camera
- 35.3. Vision
- 35.4. Optical Systems That Magnify
- 35.5. Color and Dispersion
- 35.6. The Resolution of Optical Instruments
- Summary
- Questions and Problems
- Knowledge Structure: Part VII: Optics
- Part VIII: Relativity and Quantum Physics
- Overview: Contemporary Physics
- Chapter 36: Relativity
- 36.1. Relativity: What’s It All About?
- 36.2. Galilean Relativity
- 36.3. Einstein’s Principle of Relativity
- 36.4. Events and Measurements
- 36.5. The Relativity of Simultaneity
- 36.6. Time Dilation
- 36.7. Length Contraction
- 36.8. The Lorentz Transformations
- 36.9. Relativistic Momentum
- 36.10. Relativistic Energy
- Summary
- Questions and Problems
- Chapter 37: The Foundations of Modern Physics
- 37.1. Matter and Light
- 37.2. The Emission and Absorption of Light
- 37.3. Cathode Rays and X Rays
- 37.4. The Discovery of the Electron
- 37.5. The Fundamental Unit of Charge
- 37.6. The Discovery of the Nucleus
- 37.7. Into the Nucleus
- 37.8. Classical Physics at the Limit
- Summary
- Questions and Problems
- Chapter 38: Quantization
- 38.1. The Photoelectric Effect
- 38.2. Einstein’s Explanation
- 38.3. Photons
- 38.4. Matter Waves and Energy Quantization
- 38.5. Bohr’s Model of Atomic Quantization
- 38.6. The Bohr Hydrogen Atom
- 38.7. The Hydrogen Spectrum
- Summary
- Questions and Problems
- Chapter 39: Wave Functions and Uncertainty
- 39.1. Waves, Particles, and the Double-Slit Experiment
- 39.2. Connecting the Wave and Photon Views
- 39.3. The Wave Function
- 39.4. Normalization
- 39.5. Wave Packets
- 39.6. The Heisenberg Uncertainty Principle
- Summary
- Questions and Problems
- Chapter 40: One-Dimensional Quantum Mechanics
- 40.1. The Schrödinger Equation
- 40.2. Solving the Schrödinger Equation
- 40.3. A Particle in a Rigid Box: Energies and Wave Functions
- 40.4. A Particle in a Rigid Box: Interpreting the Solution
- 40.5. The Correspondence Principle
- 40.6. Finite Potential Wells
- 40.7. Wave-Function Shapes
- 40.8. The Quantum Harmonic Oscillator
- 40.9. More Quantum Models
- 40.10. Quantum-Mechanical Tunneling
- Summary
- Questions and Problems
- Chapter 41: Atomic Physics
- 41.1. The Hydrogen Atom: Angular Momentum and Energy
- 41.2. The Hydrogen Atom: Wave Functions and Probabilities
- 41.3. The Electron’s Spin
- 41.4. Multielectron Atoms
- 41.5. The Periodic Table of the Elements
- 41.6. Excited States and Spectra
- 41.7. Lifetimes of Excited States
- 41.8. Stimulated Emission and Lasers
- Summary
- Questions and Problems
- Chapter 42: Nuclear Physics
- 42.1. Nuclear Structure
- 42.2. Nuclear Stability
- 42.3. The Strong Force
- 42.4. The Shell Model
- 42.5. Radiation and Radioactivity
- 42.6. Nuclear Decay Mechanisms
- 42.7. Biological Applications of Nuclear Physics
- Summary
- Questions and Problems
- Knowledge Structure: Part VIII: Relativity and Quantum Physics
- Appendix A: Mathematics Review
- Appendix B: Periodic Table of Elements
- Appendix C: Atomic and Nuclear Data
- Answers to Stop to Think Questions and Odd-Numbered Problems
- Credits
- Index
- Back End Paper
- Back Cover
Reviews
There are no reviews yet.