Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Global Edition

Höfundur Randall Knight

Útgefandi Pearson International Content

Snið Page Fidelity

Print ISBN 9781292157429

Útgáfa 4

Höfundarréttur 2017

4.890 kr.

Description

Efnisyfirlit

  • Front End Paper
  • Title Page
  • Copyright Page
  • About the Author
  • Preface to the Instructor
  • Acknowledgments
  • Preface to the Student
  • Contents
  • Part I: Newton’s Laws
  • Overview: Why Things Change
  • Chapter 1: Concepts of Motion
  • 1.1. Motion Diagrams
  • 1.2. Models and Modeling
  • 1.3. Position, Time, and Displacement
  • 1.4. Velocity
  • 1.5. Linear Acceleration
  • 1.6. Motion in One Dimension
  • 1.7. Solving Problems in Physics
  • 1.8. Unit and Significant Figures
  • Summary
  • Questions and Problems
  • Chapter 2: Kinematics in One Dimension
  • 2.1. Uniform Motion
  • 2.2. Instantaneous Velocity
  • 2.3. Finding Position from Velocity
  • 2.4. Motion with Constant Acceleration
  • 2.5. Free Fall
  • 2.6. Motion on an Inclined Plane
  • 2.7. Advanced Topic: Instantaneous Acceleration
  • Summary
  • Questions and Problems
  • Chapter 3: Vectors and Coordinate Systems
  • 3.1. Scalars and Vectors
  • 3.2. Using Vectors
  • 3.3. Coordinate Systems and Vector Components
  • 3.4. Unit Vectors and Vector Algebra
  • Summary
  • Questions and Problems
  • Chapter 4: Kinematics in Two Dimensions
  • 4.1. Motion in Two Dimensions
  • 4.2. Projectile Motion
  • 4.3. Relative Motion
  • 4.4. Uniform Circular Motion
  • 4.5. Centripetal Acceleration
  • 4.6. Nonuniform Circular Motion
  • Summary
  • Questions and Problems
  • Chapter 5: Force and Motion
  • 5.1. Force
  • 5.2. A Short Catalog of Forces
  • 5.3. Identifying Forces
  • 5.4. What Do Forces Do?
  • 5.5. Newton’s Second Law
  • 5.6. Newton’s First Law
  • 5.7. Free-Body Diagrams
  • Summary
  • Questions and Problems
  • Chapter 6: Dynamics I: Motion Along a Line
  • 6.1. The Equilibrium Model
  • 6.2. Using Newton’s Second Law
  • 6.3. Mass, Weight, and Gravity
  • 6.4. Friction
  • 6.5. Drag
  • 6.6. More Examples of Newton’s Second Law
  • Summary
  • Questions and Problems
  • Chapter 7: Newton’s Third Law
  • 7.1. Interacting Objects
  • 7.2. Analyzing Interacting Objects
  • 7.3. Newton’s Third Law
  • 7.4. Ropes and Pulleys
  • 7.5. Examples of Interacting-Object Problems
  • Summary
  • Questions and Problems
  • Chapter 8: Dynamics II: Motion in a Plane
  • 8.1. Dynamics in Two Dimensions
  • 8.2. Uniform Circular Motion
  • 8.3. Circular Orbits
  • 8.4. Reasoning About Circular Motion
  • 8.5. Nonuniform Circular Motion
  • Summary
  • Questions and Problems
  • Knowledge Structure: Part I: Newton’s Laws
  • Part II: Conservation Laws
  • Overview: Why Some Things Don’t Change
  • Chapter 9: Work and Kinetic Energy
  • 9.1. Energy Overview
  • 9.2. Work and Kinetic Energy for a Single Particle
  • 9.3. Calculating the Work Done
  • 9.4. Restoring Forces and the Work Done by a Spring
  • 9.5. Dissipative Forces and Thermal Energy
  • 9.6. Power
  • Summary
  • Questions and Problems
  • Chapter 10: Interactions and Potential Energy
  • 10.1. Potential Energy
  • 10.2. Gravitational Potential Energy
  • 10.3. Elastic Potential Energy
  • 10.4. Conservation of Energy
  • 10.5. Energy Diagrams
  • 10.6. Force and Potential Energy
  • 10.7. Conservative and Nonconservative Forces
  • 10.8. The Energy Principle Revisited
  • Summary
  • Questions and Problems
  • Chapter 11: Impulse and Momentum
  • 11.1. Momentum and Impulse
  • 11.2. Conservation of Momentum
  • 11.3. Collisions
  • 11.4. Explosions
  • 11.5. Momentum in Two Dimensions
  • 11.6. Advanced Topic: Rocket Propulsion
  • Summary
  • Questions and Problems
  • Knowledge Structure: Part II: Conservation Laws
  • Part III: Applications of Newtonian Mechanics
  • Overview: Power Over Our Environment
  • Chapter 12: Rotation of a Rigid Body
  • 12.1. Rotational Motion
  • 12.2. Rotation About the Center of Mass
  • 12.3. Rotational Energy
  • 12.4. Calculating Moment of Inertia
  • 12.5. Torque
  • 12.6. Rotational Dynamics
  • 12.7. Rotation About a Fixed Axis
  • 12.8. Static Equilibrium
  • 12.9. Rolling Motion
  • 12.10. The Vector Description of Rotational Motion
  • 12.11. Angular Momentum
  • 12.12. Advanced Topic: Precession of a Gyroscope
  • Summary
  • Questions and Problems
  • Chapter 13: Newton’s Theory of Gravity
  • 13.1. A Little History
  • 13.2. Isaac Newton
  • 13.3. Newton’s Law of Gravity
  • 13.4. Little g and Big G
  • 13.5. Gravitational Potential Energy
  • 13.6. Satellite Orbits and Energies
  • Summary
  • Questions and Problems
  • Chapter 14: Fluids and Elasticity
  • 14.1. Fluids
  • 14.2. Pressure
  • 14.3. Measuring and Using Pressure
  • 14.4. Buoyancy
  • 14.5. Fluid Dynamics
  • 14.6. Elasticity
  • Summary
  • Questions and Problems
  • Knowledge Structure: Part III: Applications of Newtonian Mechanics
  • Part IV: Oscillations and Waves
  • Overview: The Wave Model
  • Chapter 15: Oscillations
  • 15.1. Simple Harmonic Motion
  • 15.2. SHM and Circular Motion
  • 15.3. Energy in SHM
  • 15.4. The Dynamics of SHM
  • 15.5. Vertical Oscillations
  • 15.6. The Pendulum
  • 15.7. Damped Oscillations
  • 15.8. Driven Oscillations and Resonance
  • Summary
  • Questions and Problems
  • Chapter 16: Traveling Waves
  • 16.1. The Wave Model
  • 16.2. One-Dimensional Waves
  • 16.3. Sinusoidal Waves
  • 16.4. Advanced Topic: The Wave Equation on a String
  • 16.5. Sound and Light
  • 16.6. Advanced Topic: The Wave Equation in a Fluid
  • 16.7. Waves in Two and Three Dimensions
  • 16.8. Power, Intensity, and Decibels
  • 16.9. The Doppler Effect
  • Summary
  • Questions and Problems
  • Chapter 17: Superposition
  • 17.1. The Principle of Superposition
  • 17.2. Standing Waves
  • 17.3. Standing Waves on a String
  • 17.4. Standing Sound Waves and Musical Acoustics
  • 17.5. Interference in One Dimension
  • 17.6. The Mathematics of Interference
  • 17.7. Interference in Two and Three Dimensions
  • 17.8. Beats
  • Summary
  • Questions and Problems
  • Knowledge Structure: Part IV: Oscillations and Waves
  • Part V: Thermodynamics
  • Overview: It’s All About Energy
  • Chapter 18: A Macroscopic Description of Matter
  • 18.1. Solids, Liquids, and Gases
  • 18.2. Atoms and Moles
  • 18.3. Temperature
  • 18.4. Thermal Expansion
  • 18.5. Phase Changes
  • 18.6. Ideal Gases
  • 18.7. Ideal-Gas Processes
  • Summary
  • Questions and Problems
  • Chapter 19: Work, Heat, and the First Law of Thermodynamics
  • 19.1. It’s All About Energy
  • 19.2. Work in Ideal-Gas Processes
  • 19.3. Heat
  • 19.4. The First Law of Thermodynamics
  • 19.5. Thermal Properties of Matter
  • 19.6. Calorimetry
  • 19.7. The Specific Heats of Gases
  • 19.8. Heat-Transfer Mechanisms
  • Summary
  • Questions and Problems
  • Chapter 20: The Micro/Macro Connection
  • 20.1. Molecular Speeds and Collisions
  • 20.2. Pressure in a Gas
  • 20.3. Temperature
  • 20.4. Thermal Energy and Specific Heat
  • 20.5. Thermal Interactions and Heat
  • 20.6. Irreversible Processes and the Second Law of Thermodynamics
  • Summary
  • Questions and Problems
  • Chapter 21: Heat Engines and Refrigerators
  • 21.1. Turning Heat into Work
  • 21.2. Heat Engines and Refrigerators
  • 21.3. Ideal-Gas Heat Engines
  • 21.4. Ideal-Gas Refrigerators
  • 21.5. The Limits of Efficiency
  • 21.6. The Carnot Cycle
  • Summary
  • Questions and Problems
  • Knowledge Structure: Part V: Thermodynamics
  • Part VI: Electricity and Magnetism
  • Overview: Forces and Fields
  • Chapter 22: Electric Charges and Forces
  • 22.1. The Charge Model
  • 22.2. Charge
  • 22.3. Insulators and Conductors
  • 22.4. Coulomb’s Law
  • 22.5. The Electric Field
  • Summary
  • Questions and Problems
  • Chapter 23: The Electric Field
  • 23.1. Electric Field Models
  • 23.2. The Electric Field of Point Charges
  • 23.3. The Electric Field of a Continuous Charge Distribution
  • 23.4. The Electric Fields of Rings, Disks, Planes, and Spheres
  • 23.5. The Parallel-Plate Capacitor
  • 23.6. Motion of a Charged Particle in an Electric Field
  • 23.7. Motion of a Dipole in an Electric Field
  • Summary
  • Questions and Problems
  • Chapter 24: Gauss’s Law
  • 24.1. Symmetry
  • 24.2. The Concept of Flux
  • 24.3. Calculating Electric Flux
  • 24.4. Gauss’s Law
  • 24.5. Using Gauss’s Law
  • 24.6. Conductors in Electrostatic Equilibrium
  • Summary
  • Questions and Problems
  • Chapter 25: The Electric Potential
  • 25.1. Electric Potential Energy
  • 25.2. The Potential Energy of Point Charges
  • 25.3. The Potential Energy of a Dipole
  • 25.4. The Electric Potential
  • 25.5. The Electric Potential Inside a Parallel- Plate Capacitor
  • 25.6. The Electric Potential of a Point Charge
  • 25.7. The Electric Potential of Many Charges
  • Summary
  • Questions and Problems
  • Chapter 26: Potential and Field
  • 26.1. Connecting Potential and Field
  • 26.2. Finding the Electric Field from the Potential
  • 26.3. A Conductor in Electrostatic Equilibrium
  • 26.4. Sources of Electric Potential
  • 26.5. Capacitance and Capacitors
  • 26.6. The Energy Stored in a Capacitor
  • 26.7. Dielectrics
  • Summary
  • Questions and Problems
  • Chapter 27: Current and Resistance
  • 27.1. The Electron Current
  • 27.2. Creating a Current
  • 27.3. Current and Current Density
  • 27.4. Conductivity and Resistivity
  • 27.5. Resistance and Ohm’s Law
  • Summary
  • Questions and Problems
  • Chapter 28: Fundamentals of Circuits
  • 28.1. Circuit Elements and Diagrams
  • 28.2. Kirchhoff’s Laws and the Basic Circuit
  • 28.3. Energy and Power
  • 28.4. Series Resistors
  • 28.5. Real Batteries
  • 28.6. Parallel Resistors
  • 28.7. Resistor Circuits
  • 28.8. Getting Grounded
  • 28.9. RC Circuits
  • Summary
  • Questions and Problems
  • Chapter 29: The Magnetic Field
  • 29.1. Magnetism
  • 29.2. The Discovery of the Magnetic Field
  • 29.3. The Source of the Magnetic Field: Moving Charges
  • 29.4. The Magnetic Field of a Current
  • 29.5. Magnetic Dipoles
  • 29.6. Ampère’s Law and Solenoids
  • 29.7. The Magnetic Force on a Moving Charge
  • 29.8. Magnetic Forces on Current-Carrying Wires
  • 29.9. Forces and Torques on Current Loops
  • 29.10. Magnetic Properties of Matter
  • Summary
  • Questions and Problems
  • Chapter 30. Electromagnetic Induction
  • 30.1. Induced Currents
  • 30.2. Motional emf
  • 30.3. Magnetic Flux
  • 30.4. Lenz’s Law
  • 30.5. Faraday’s Law
  • 30.6. Induced Fields
  • 30.7. Induced Currents: Three Applications
  • 30.8. Inductors
  • 30.9. LC Circuits
  • 30.10. LR Circuits
  • Summary
  • Questions and Problems
  • Chapter 31: Electromagnetic Fields and Waves
  • 31.1. E or B? It Depends on Your Perspective
  • 31.2. The Field Laws Thus Far
  • 31.3. The Displacement Current
  • 31.4. Maxwell’s Equations
  • 31.5. Advanced Topic: Electromagnetic Waves
  • 31.6. Properties of Electromagnetic Waves
  • 31.7. Polarization
  • Summary
  • Questions and Problems
  • Chapter 32: AC Circuits
  • 32.1. AC Sources and Phasors
  • 32.2. Capacitor Circuits
  • 32.3. RC Filter Circuits
  • 32.4. Inductor Circuits
  • 32.5. The Series RLC Circuit
  • 32.6. Power in AC Circuits
  • Summary
  • Questions and Problems
  • Knowledge Structure: Part VI: Electricity and Magnetism
  • Part VII: Optics
  • Overview: The Story of Light
  • Chapter 33: Wave Optics
  • 33.1. Models of Light
  • 33.2. The Interference of Light
  • 33.3. The Diffraction Grating
  • 33.4. Single-Slit Diffraction
  • 33.5. Advanced Topic: A Closer Look at Diffraction
  • 33.6. Circular-Aperture Diffraction
  • 33.7. The Wave Model of Light
  • 33.8. Interferometers
  • Summary
  • Questions and Problems
  • Chapter 34: Ray Optics
  • 34.1. The Ray Model of Light
  • 34.2. Reflection
  • 34.3. Refraction
  • 34.4. Image Formation by Refraction at a Plane Surface
  • 34.5. Thin Lenses: Ray Tracing
  • 34.6. Thin Lenses: Refraction Theory
  • 34.7. Image Formation with Spherical Mirrors
  • Summary
  • Questions and Problems
  • Chapter 35: Optical Instruments
  • 35.1. Lenses in Combination
  • 35.2. The Camera
  • 35.3. Vision
  • 35.4. Optical Systems That Magnify
  • 35.5. Color and Dispersion
  • 35.6. The Resolution of Optical Instruments
  • Summary
  • Questions and Problems
  • Knowledge Structure: Part VII: Optics
  • Part VIII: Relativity and Quantum Physics
  • Overview: Contemporary Physics
  • Chapter 36: Relativity
  • 36.1. Relativity: What’s It All About?
  • 36.2. Galilean Relativity
  • 36.3. Einstein’s Principle of Relativity
  • 36.4. Events and Measurements
  • 36.5. The Relativity of Simultaneity
  • 36.6. Time Dilation
  • 36.7. Length Contraction
  • 36.8. The Lorentz Transformations
  • 36.9. Relativistic Momentum
  • 36.10. Relativistic Energy
  • Summary
  • Questions and Problems
  • Chapter 37: The Foundations of Modern Physics
  • 37.1. Matter and Light
  • 37.2. The Emission and Absorption of Light
  • 37.3. Cathode Rays and X Rays
  • 37.4. The Discovery of the Electron
  • 37.5. The Fundamental Unit of Charge
  • 37.6. The Discovery of the Nucleus
  • 37.7. Into the Nucleus
  • 37.8. Classical Physics at the Limit
  • Summary
  • Questions and Problems
  • Chapter 38: Quantization
  • 38.1. The Photoelectric Effect
  • 38.2. Einstein’s Explanation
  • 38.3. Photons
  • 38.4. Matter Waves and Energy Quantization
  • 38.5. Bohr’s Model of Atomic Quantization
  • 38.6. The Bohr Hydrogen Atom
  • 38.7. The Hydrogen Spectrum
  • Summary
  • Questions and Problems
  • Chapter 39: Wave Functions and Uncertainty
  • 39.1. Waves, Particles, and the Double-Slit Experiment
  • 39.2. Connecting the Wave and Photon Views
  • 39.3. The Wave Function
  • 39.4. Normalization
  • 39.5. Wave Packets
  • 39.6. The Heisenberg Uncertainty Principle
  • Summary
  • Questions and Problems
  • Chapter 40: One-Dimensional Quantum Mechanics
  • 40.1. The Schrödinger Equation
  • 40.2. Solving the Schrödinger Equation
  • 40.3. A Particle in a Rigid Box: Energies and Wave Functions
  • 40.4. A Particle in a Rigid Box: Interpreting the Solution
  • 40.5. The Correspondence Principle
  • 40.6. Finite Potential Wells
  • 40.7. Wave-Function Shapes
  • 40.8. The Quantum Harmonic Oscillator
  • 40.9. More Quantum Models
  • 40.10. Quantum-Mechanical Tunneling
  • Summary
  • Questions and Problems
  • Chapter 41: Atomic Physics
  • 41.1. The Hydrogen Atom: Angular Momentum and Energy
  • 41.2. The Hydrogen Atom: Wave Functions and Probabilities
  • 41.3. The Electron’s Spin
  • 41.4. Multielectron Atoms
  • 41.5. The Periodic Table of the Elements
  • 41.6. Excited States and Spectra
  • 41.7. Lifetimes of Excited States
  • 41.8. Stimulated Emission and Lasers
  • Summary
  • Questions and Problems
  • Chapter 42: Nuclear Physics
  • 42.1. Nuclear Structure
  • 42.2. Nuclear Stability
  • 42.3. The Strong Force
  • 42.4. The Shell Model
  • 42.5. Radiation and Radioactivity
  • 42.6. Nuclear Decay Mechanisms
  • 42.7. Biological Applications of Nuclear Physics
  • Summary
  • Questions and Problems
  • Knowledge Structure: Part VIII: Relativity and Quantum Physics
  • Appendix A: Mathematics Review
  • Appendix B: Periodic Table of Elements
  • Appendix C: Atomic and Nuclear Data
  • Answers to Stop to Think Questions and Odd-Numbered Problems
  • Credits
  • Index
  • Back End Paper
  • Back Cover
Show More

Additional information

Veldu vöru

Rafbók til eignar, Leiga á rafbók í 365 daga, Leiga á rafbók í 180 daga, Leiga á rafbók í 90 daga

Reviews

There are no reviews yet.

Be the first to review “Physics for Scientists and Engineers: A Strategic Approach with Modern Physics, Global Edition”

Netfang þitt verður ekki birt. Nauðsynlegir reitir eru merktir *

Aðrar vörur

0
    0
    Karfan þín
    Karfan þín er tómAftur í búð