The R Book

Höfundur Elinor Jones; Simon Harden; Michael J. Crawley

Útgefandi Wiley Professional Development (P&T)

Snið ePub

Print ISBN 9781119634324

Útgáfa 3

Útgáfuár 2022

9.690 kr.

Description

Efnisyfirlit

  • Cover
  • Title Page
  • Copyright
  • List of Tables
  • Preface
  • Acknowledgments
  • About the Companion Website
  • 1 Getting Started
  • 1.1 Navigating the book
  • 1.2 vs. RStudio
  • 1.3 Installing and RStudio
  • 1.4 Using RStudio
  • 1.5 The Comprehensive Archive Network
  • 1.6 Packages in
  • 1.7 Getting help in
  • 1.8 Good housekeeping
  • 1.9 Linking to other computer languages
  • References
  • 2 Technical Background
  • 2.1 Mathematical functions
  • 2.2 Matrices
  • 2.3 Calculus
  • 2.4 Probability
  • 2.5 Statistics
  • Reference
  • 3 Essentials of the Language
  • 3.1 Calculations
  • 3.2 Naming objects
  • 3.3 Factors
  • 3.4 Logical operations
  • 3.5 Generating sequences
  • 3.6 Class membership
  • 3.7 Missing values, infinity, and things that are not numbers
  • 3.8 Vectors and subscripts
  • 3.9 Working with logical subscripts
  • 3.10 Vector functions
  • 3.11 Matrices and arrays
  • 3.12 Random numbers, sampling, and shuffling
  • 3.13 Loops and repeats
  • 3.14 Lists
  • 3.15 Text, character strings, and pattern matching
  • 3.16 Dates and times in
  • 3.17 Environments
  • 3.18 Writing functions
  • 3.19 Structure of objects
  • 3.20 Writing from to a file
  • 3.21 Tips for writing code
  • References
  • 4 Data Input and Dataframes
  • 4.1 Working directory
  • 4.2 Data input from files
  • 4.3 Data input directly from the web
  • 4.4 Built‐in data files
  • 4.5 Dataframes
  • 4.6 Using the match () function in dataframes
  • 4.7 Adding margins to a dataframe
  • 5 Graphics
  • 5.1 Plotting principles
  • 5.2 Plots for single variables
  • 5.3 Plots for showing two numeric variables
  • 5.4 Plots for numeric variables by group
  • 5.5 Plots showing two categorical variables
  • 5.6 Plots for three (or more) variables
  • 5.7 Trellis graphics
  • 5.8 Plotting functions
  • References
  • 6 Graphics in More Detail
  • 6.1 More on colour
  • 6.2 Changing the look of graphics
  • 6.3 Adding items to plots
  • 6.4 The grammar of graphics and ggplot2
  • 6.5 Graphics cheat sheet
  • References
  • 7 Tables
  • 7.1 Tabulating categorical or discrete data
  • 7.2 Tabulating summaries of numeric data
  • 7.3 Converting between tables and dataframes
  • Reference
  • 8 Probability Distributions in
  • 8.1 Probability distributions: the basics
  • 8.2 Probability distributions in
  • 8.3 Continuous probability distributions
  • 8.4 Discrete probability distributions
  • 8.5 The central limit theorem
  • References
  • 9 Testing
  • 9.1 Principles
  • 9.2 Continuous data
  • 9.3 Discrete and categorical data
  • 9.4 Bootstrapping
  • 9.5 Multiple tests
  • 9.6 Power and sample size calculations
  • 9.7 A table of tests
  • References
  • 10 Regression
  • 10.1 The simple linear regression model
  • 10.2 The multiple linear regression model
  • 10.3 Understanding the output
  • 10.4 Fitting models
  • 10.5 Checking model assumptions
  • 10.6 Using the model
  • 10.7 Further types of regression modelling
  • References
  • 11 Generalised Linear Models
  • 11.1 How GLMs work
  • 11.2 Count data and GLMs
  • 11.3 Count table data and GLMs
  • 11.4 Proportion data and GLMs
  • 11.5 Binary Response Variables and GLMs
  • 11.6 Bootstrapping a GLM
  • References
  • 12 Generalised Additive Models
  • 12.1 Smoothing example
  • 12.2 Straightforward examples of GAMs
  • 12.3 Background to using GAMs
  • 12.4 More complex GAM examples
  • References
  • 13 Mixed‐Effect Models
  • 13.1 Regression with categorical covariates
  • 13.2 An alternative method: random effects
  • 13.3 Common data structures where random effects are useful
  • 13.4 packages to deal with mixed effects models
  • 13.5 Examples of implementing random effect models
  • 13.6 Generalised linear mixed models
  • 13.7 Alternatives to mixed models
  • References
  • 14 Non‐linear Regression
  • 14.1 Example: modelling deer jaw bone length
  • 14.2 Example: grouped data
  • 14.3 Self‐starting functions
  • 14.4 Further considerations
  • References
  • 15 Survival Analysis
  • 15.1 Handling survival data
  • 15.2 The survival and hazard functions
  • 15.3 Modelling survival data
  • References
  • 16 Designed Experiments
  • 16.1 Factorial experiments
  • 16.2 Pseudo‐replication
  • 16.3 Contrasts
  • References
  • 17 Meta‐Analysis
  • 17.1 Elements of a meta‐analysis
  • 17.2 Meta‐analysis in
  • 17.3 Examples
  • 17.4 Meta‐analysis of categorical data
  • References
  • 18 Time Series
  • 18.1 Moving average
  • 18.2 Blowflies
  • 18.3 Seasonal data
  • 18.4 Multiple time series
  • 18.5 Some theoretical background
  • 18.6 ARIMA example
  • 18.7 Simulation of time series
  • Reference
  • 19 Multivariate Statistics
  • 19.1 Visualising data
  • 19.2 Multivariate analysis of variance
  • 19.3 Principal component analysis
  • 19.4 Factor analysis
  • 19.5 Cluster analysis
  • 19.6 Hierarchical cluster analysis
  • 19.7 Discriminant analysis
  • 19.8 Neural networks
  • References
  • 20 Classification and Regression Trees
  • 20.1 How CARTs work
  • 20.2 Regression trees
  • 20.3 Classification trees
  • 20.4 Looking for patterns
  • References
  • 21 Spatial Statistics
  • 21.1 Spatial point processes
  • 21.2 Geospatial statistics
  • References
  • 22 Bayesian Statistics
  • 22.1 Components of a Bayesian Analysis
  • 22.2 Bayesian analysis in
  • 22.3 Examples
  • 22.4 MCMC for a model with binomial errors
  • References
  • 23 Simulation Models
  • 23.1 Temporal dynamics
  • 23.2 Spatial simulation models
  • 23.3 Temporal and spatial dynamics: random walk
  • References
  • Index
  • End User License Agreement
Show More

Additional information

Veldu vöru

Rafbók til eignar

Reviews

There are no reviews yet.

Be the first to review “The R Book”

Netfang þitt verður ekki birt. Nauðsynlegir reitir eru merktir *

Aðrar vörur

1
    1
    Karfan þín
    Accounting For Dummies
    Accounting For Dummies
    Veldu vöru:

    Rafbók til eignar

    1 X 2.590 kr. = 2.590 kr.