Thermodynamics: An Interactive Approach, Global Edition

Höfundur Subrata Bhattacharjee

Útgefandi Pearson International Content

Snið Page Fidelity

Print ISBN 9781292113746

Útgáfa 1

Höfundarréttur 2016

4.990 kr.

Description

Efnisyfirlit

  • Title Page
  • Copyright Page
  • Table of Contents
  • Preface
  • Introduction Thermodynamic System and Its Interactions with the Surroundings
  • 0.1 Thermodynamic Systems
  • 0.2 Test and Animations
  • 0.3 Examples of Thermodynamic Systems
  • 0.4 Interactions Between the System and Its Surroundings
  • 0.5 Mass Interaction
  • 0.6 Test and the TESTcalcs
  • 0.7 Energy, Work, and Heat
  • 0.7.1 Heat and Heating Rate
  • 0.7.2 Work and Power
  • 0.8 Work Transfer Mechanisms
  • 0.8.1 Mechanical Work
  • 0.8.2 Shaft Work
  • 0.8.3 Electrical Work
  • 0.8.4 Boundary Work
  • 0.8.5 Flow Work
  • 0.8.6 Net Work Transfer
  • 0.8.7 Other Interactions
  • 0.9 Closure
  • Chapter 1 Description of a System: States and Properties
  • 1.1 Consequences of Interactions
  • 1.2 States
  • 1.3 Macroscopic vs. Microscopic Thermodynamics
  • 1.4 An Image Analogy
  • 1.5 Properties of State
  • 1.5.1 Property Evaluation by State TESTcalcs
  • 1.5.2 Properties Related to System Size
  • 1.5.3 Density and Specific Volume
  • 1.5.4 Velocity and Elevation
  • 1.5.5 Pressure
  • 1.5.6 Temperature
  • 1.5.7 Stored Energy
  • 1.5.8 Flow Energy and Enthalpy
  • 1.5.9 Entropy
  • 1.5.10 Exergy
  • 1.6 Property Classification
  • 1.7 Evaluation of Extended State
  • 1.8 Closure
  • Chapter 2 Development of Balance Equations for Mass, Energy, and Entropy: Application to Closed-Stea
  • 2.1 Balance Equations
  • 2.1.1 Mass Balance Equation
  • 2.1.2 Energy Balance Equation
  • 2.1.3 Entropy Balance Equation
  • 2.1.4 Entropy and Reversibility
  • 2.2 Closed-Steady Systems
  • 2.3 Cycles—a Special Case of Closed-Steady Systems
  • 2.3.1 Heat Engine
  • 2.3.2 Refrigerator and Heat Pump
  • 2.3.3 The Carnot Cycle
  • 2.3.4 The Kelvin Temperature Scale
  • 2.4 Closure
  • Chapter 3 Evaluation of Properties: Material Models
  • 3.1 Thermodynamic Equilibrium and States
  • 3.1.1 Equilibrium and LTE (Local Thermodynamic Equilibrium)
  • 3.1.2 The State Postulate
  • 3.1.3 Differential Thermodynamic Relations
  • 3.2 Material Models
  • 3.2.1 State TESTcalcs and TEST-Codes
  • 3.3 The SL (Solid/Liquid) Model
  • 3.3.1 SL Model Assumptions
  • 3.3.2 Equations of State
  • 3.3.3 Model Summary: SL Model
  • 3.4 The PC (Phase-Change) Model
  • 3.4.1 A New Pair of Properties—Qualities x and y
  • 3.4.2 Numerical Simulation
  • 3.4.3 Property Diagrams
  • 3.4.4 Extending the Diagrams: The Solid Phase
  • 3.4.5 Thermodynamic Property Tables
  • 3.4.6 Evaluation of Phase Composition
  • 3.4.7 Properties of Saturated Mixture
  • 3.4.8 Subcooled or Compressed Liquid
  • 3.4.9 Supercritical Vapor or Liquid
  • 3.4.10 Sublimation States
  • 3.4.11 Model Summary—PC Model
  • 3.5 GAS MODELS
  • 3.5.1 The IG (Ideal Gas) and PG (Perfect Gas) Models
  • 3.5.2 IG and PG Model Assumptions
  • 3.5.3 Equations of State
  • 3.5.4 Model Summary: PG and IG Models
  • 3.5.5 The RG (Real Gas) Model
  • 3.5.6 RG Model Assumptions
  • 3.5.7 Compressibility Charts
  • 3.5.8 Other Equations of State
  • 3.5.9 Model Summary: RG Model
  • 3.6 Mixture Models
  • 3.6.1 Vacuum
  • 3.7 Standard Reference State and Reference Values
  • 3.8 Selection of a Model
  • 3.9 Closure
  • Chapter 4 Mass, Energy, and Entropy Analysis of Open-Steady Systems
  • 4.1 Governing Equations and Device Efficiencies
  • 4.1.1 TEST and the Open-Steady TESTcalcs
  • 4.1.2 Energetic Efficiency
  • 4.1.3 Internally Reversible System
  • 4.1.4 Isentropic Efficiency
  • 4.2 Comprehensive Analysis
  • 4.2.1 Pipes, Ducts, or Tubes
  • 4.2.2 Nozzles and Diffusers
  • 4.2.3 Turbines
  • 4.2.4 Compressors, Fans, and Pumps
  • 4.2.5 Throttling Valves
  • 4.2.6 Heat Exchangers
  • 4.2.7 TEST and the Multi-Flow, Non-Mixing TESTcalcs
  • 4.2.8 Mixing Chambers and Separators
  • 4.2.9 TEST and the Multi-Flow, Mixing TESTcalcs
  • 4.3 Closure
  • Chapter 5 Mass, Energy, and Entropy Analysis of Unsteady Systems
  • 5.1 Unsteady Processes
  • 5.1.1 Closed Processes
  • 5.1.2 TEST and the Closed-Process TESTcalcs
  • 5.1.3 Energetic Efficiency and Reversibility
  • 5.1.4 Uniform Closed Processes
  • 5.1.5 Non-Uniform Systems
  • 5.1.6 TEST and the Non-Uniform Closed-Process TESTcalcs
  • 5.1.7 Open Processes
  • 5.1.8 TEST and Open-Process TESTcalcs
  • 5.2 Transient Analysis
  • 5.2.1 Closed-Transient Systems
  • 5.2.2 Isolated Systems
  • 5.2.3 Mechanical Systems
  • 5.2.4 Open-Transient Systems
  • 5.3 Differential Processes
  • 5.4 Thermodynamic Cycle as a Closed Process
  • 5.4.1 Origin of Internal Energy
  • 5.4.2 Clausius Inequality and Entropy
  • 5.5 Closure
  • Chapter 6 Exergy Balance Equation: Application to Steady and Unsteady Systems
  • 6.1 Exergy Balance Equation
  • 6.1.1 Exergy, Reversible Work, and Irreversibility
  • 6.1.2 TESTcalcs for Exergy Analysis
  • 6.2 Closed-Steady Systems
  • 6.2.1 Exergy Analysis of Cycles
  • 6.3 Open-Steady Systems
  • 6.4 Closed Processes
  • 6.5 Open Processes
  • 6.6 Closure
  • Chapter 7 Reciprocating Closed Power Cycles
  • 7.1 The Closed Carnot Heat Engine
  • 7.1.1 Significance of the Carnot Engine
  • 7.2 IC Engine Terminology
  • 7.3 Air-Standard Cycles
  • 7.3.1 TEST and the Reciprocating Cycle TESTcalcs
  • 7.4 Otto Cycle
  • 7.4.1 Cycle Analysis
  • 7.4.2 Qualitative Performance Predictions
  • 7.4.3 Fuel Consideration
  • 7.5 Diesel Cycle
  • 7.5.1 Cycle Analysis
  • 7.5.2 Fuel Consideration
  • 7.6 Dual Cycle
  • 7.7 Atkinson and Miller Cycles
  • 7.8 Stirling Cycle
  • 7.9 Two-Stroke Cycle
  • 7.10 Fuels
  • 7.11 Closure
  • Chapter 8 Open Gas Power Cycle
  • 8.1 The Gas Turbine
  • 8.2 The Air-Standard Brayton Cycle
  • 8.2.1 TEST and the Open Gas Power Cycle TESTcalcs
  • 8.2.2 Fuel Consideration
  • 8.2.3 Qualitative Performance Predictions
  • 8.2.4 Irreversibilities in an Actual Cycle
  • 8.2.5 Exergy Accounting of Brayton Cycle
  • 8.3 Gas Turbine with Regeneration
  • 8.4 Gas Turbine with Reheat
  • 8.5 Gas Turbine with Intercooling and Reheat
  • 8.6 Regenerative Gas Turbine with Reheat and Intercooling
  • 8.7 Gas Turbines For Jet Propulsion
  • 8.7.1 The Momentum Balance Equation
  • 8.7.2 Jet Engine Performance
  • 8.7.3 Air-Standard Cycle for Turbojet Analysis
  • 8.8 Other Forms of Jet Propulsion
  • 8.9 Closure
  • Chapter 9 Open Vapor Power Cycles
  • 9.1 The Steam Power Plant
  • 9.2 The Rankine Cycle
  • 9.2.1 Carbon Footprint
  • 9.2.2 TEST and the Open Vapor Power Cycle TESTcalcs
  • 9.2.3 Qualitative Performance Predictions
  • 9.2.4 Parametric Study of the Rankine Cycle
  • 9.2.5 Irreversibilities in an Actual Cycle
  • 9.2.6 Exergy Accounting of Rankine Cycle
  • 9.3 Modification of Rankine Cycle
  • 9.3.1 Reheat Rankine Cycle
  • 9.3.2 Regenerative Rankine Cycle
  • 9.4 Cogeneration
  • 9.5 Binary Vapor Cycle
  • 9.6 Combined Cycle
  • 9.7 Closure
  • Chapter 10 Refrigeration Cycles
  • 10.1 Refrigerators and Heat Pump
  • 10.2 Test and the Refrigeration Cycle TESTcalcs
  • 10.3 Vapor-Refrigeration Cycles
  • 10.3.1 Carnot Refrigeration Cycle
  • 10.3.2 Vapor Compression Cycle
  • 10.3.3 Analysis of an Ideal Vapor-Compression Refrigeration Cycle
  • 10.3.4 Qualitative Performance Predictions
  • 10.3.5 Actual Vapor-Compression Cycle
  • 10.3.6 Components of a Vapor-Compression Plant
  • 10.3.7 Exergy Accounting of Vapor Compression Cycle
  • 10.3.8 Refrigerant Selection
  • 10.3.9 Cascade Refrigeration Systems
  • 10.3.10 Multistage Refrigeration with Flash Chamber
  • 10.4 Absorption Refrigeration Cycle
  • 10.5 Gas Refrigeration Cycles
  • 10.5.1 Reversed Brayton Cycle
  • 10.5.2 Linde-Hampson Cycle
  • 10.6 Heat Pump Systems
  • 10.7 Closure
  • Chapter 11 Evaluation of Properties: Thermodynamic Relations
  • 11.1 Thermodynamic Relations
  • 11.1.1 The Tds Relations
  • 11.1.2 Partial Differential Relations
  • 11.1.3 The Maxwell Relations
  • 11.1.4 The Clapeyron Equation
  • 11.1.5 The Clapeyron-Clausius Equation
  • 11.2 Evaluation of Properties
  • 11.2.1 Internal Energy
  • 11.2.2 Enthalpy
  • 11.2.3 Entropy
  • 11.2.4 Volume Expansivity and Compressibility
  • 11.2.5 Specific Heats
  • 11.2.6 Joule-Thompson Coefficient
  • 11.3 The Real Gas (RG) Model
  • 11.4 Mixture Models
  • 11.4.1 Mixture Composition
  • 11.4.2 Mixture TESTcalcs
  • 11.4.3 PG and IG Mixture Models
  • 11.4.4 Mass, Energy, and Entropy Equations for IG-Mixtures
  • 11.4.5 Real Gas Mixture Model
  • 11.5 Closure
  • Chapter 12 Psychrometry
  • 12.1 The Moist Air Model
  • 12.1.1 Model Assumptions
  • 12.1.2 Saturation Processes
  • 12.1.3 Absolute and Relative Humidity
  • 12.1.4 Dry- and Wet-Bulb Temperatures
  • 12.1.5 Moist Air (Ma ) TESTcalcs
  • 12.1.6 More Properties of Moist Air
  • 12.2 Mass and Energy Balance Equations
  • 12.2.1 Open-Steady Device
  • 12.2.2 Closed Process
  • 12.3 Adiabatic Saturation and Wet-Bulb Temperature
  • 12.4 Psychrometric Chart
  • 12.5 Air-Conditioning Processes
  • 12.5.1 Simple Heating or Cooling
  • 12.5.2 Heating with Humidification
  • 12.5.3 Cooling with Dehumidification
  • 12.5.4 Evaporative Cooling
  • 12.5.5 Adiabatic Mixing
  • 12.5.6 Wet Cooling Tower
  • 12.6 Closure
  • Chapter 13 Combustion
  • 13.1 Combustion Reaction
  • 13.1.1 Combustion TESTcalcs
  • 13.1.2 Fuels
  • 13.1.3 Air
  • 13.1.4 Combustion Products
  • 13.2 System Analysis
  • 13.3 Open-Steady Device
  • 13.3.1 Enthalpy of Formation
  • 13.3.2 Energy Analysis
  • 13.3.3 Entropy Analysis
  • 13.3.4 Exergy Analysis
  • 13.3.5 Isothermal Combustion—Fuel Cells
  • 13.3.6 Adiabatic Combustion—Power Plants
  • 13.4 Closed Process
  • 13.5 Combustion Efficiencies
  • 13.6 Closure
  • Chapter 14 Equilibrium
  • 14.1 Criteria for Equilibrium
  • 14.2 Equilibrium of Gas Mixtures
  • 14.3 Phase Equilibrium
  • 14.3.1 Osmotic Pressure and Desalination
  • 14.4 Chemical Equilibrium
  • 14.4.1 Equilibrium TESTcalcs
  • 14.4.2 Equilibrium Composition
  • 14.4.3 Significance of Equilibrium Constant
  • 14.5 Closure
  • Chapter 15 Gas Dynamics
  • 15.1 One-Dimensional Flow
  • 15.1.1 Static, Stagnation and Total Properties
  • 15.1.2 The Gas Dynamics TESTcalc
  • 15.2 Isentropic Flow of a Perfect Gas
  • 15.3 Mach Number
  • 15.4 Shape of an Isentropic Duct
  • 15.5 Isentropic Table for Perfect Gases
  • 15.6 Effect of Back Pressure: Converging Nozzle
  • 15.7 Effect of Back Pressure: Converging-Diverging Nozzle
  • 15.7.1 Normal Shock
  • 15.7.2 Normal Shock in a Nozzle
  • 15.8 Nozzle and Diffuser Coefficients
  • 15.9 Closure
  • Appendix A
  • Appendix B
  • Answers to Key Problems
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • Z
Show More

Additional information

Veldu vöru

Leiga á rafbók í 180 daga, Rafbók til eignar, Leiga á rafbók í 365 daga, Leiga á rafbók í 90 daga

Reviews

There are no reviews yet.

Be the first to review “Thermodynamics: An Interactive Approach, Global Edition”

Netfang þitt verður ekki birt. Nauðsynlegir reitir eru merktir *

Aðrar vörur

0
    0
    Karfan þín
    Karfan þín er tómAftur í búð