Tidy Finance with R

Höfundur Christoph Scheuch; Stefan Voigt; Patrick Weiss

Útgefandi Taylor & Francis

Snið ePub

Print ISBN 9781032389332

Útgáfa 1

Útgáfuár 2023

10.590 kr.

Description

Efnisyfirlit

  • Cover Page
  • Half-Title Page
  • Series Page
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • Author biographies
  • I Getting Started
  • 1 Introduction to Tidy Finance
  • 1.1 Working with Stock Market Data
  • 1.2 Scaling Up the Analysis
  • 1.3 Other Forms of Data Aggregation
  • 1.4 Portfolio Choice Problems
  • 1.5 The Efficient Frontier
  • 1.6 Exercises
  • II Financial Data
  • 2 Accessing & Managing Financial Data
  • 2.1 Fama-French Data
  • 2.2 q-Factors
  • 2.3 Macroeconomic Predictors
  • 2.4 Other Macroeconomic Data
  • 2.5 Setting Up a Database
  • 2.6 Managing SQLite Databases
  • 2.7 Exercises
  • 3 WRDS, CRSP, and Compustat
  • 3.1 Accessing WRDS
  • 3.2 Downloading and Preparing CRSP
  • 3.3 First Glimpse of the CRSP Sample
  • 3.4 Daily CRSP Data
  • 3.5 Preparing Compustat Data
  • 3.6 Merging CRSP with Compustat
  • 3.7 Some Tricks for PostgreSQL Databases
  • 3.8 Exercises
  • 4 TRACE and FISD
  • 4.1 Bond Data from WRDS
  • 4.2 Mergent FISD
  • 4.3 TRACE
  • 4.4 Insights into Corporate Bonds
  • 4.5 Exercises
  • 5 Other Data Providers
  • 5.1 Exercises
  • III Asset Pricing
  • 6 Beta Estimation
  • 6.1 Estimating Beta using Monthly Returns
  • 6.2 Rolling-Window Estimation
  • 6.3 Parallelized Rolling-Window Estimation
  • 6.4 Estimating Beta using Daily Returns
  • 6.5 Comparing Beta Estimates
  • 6.6 Exercises
  • 7 Univariate Portfolio Sorts
  • 7.1 Data Preparation
  • 7.2 Sorting by Market Beta
  • 7.3 Performance Evaluation
  • 7.4 Functional Programming for Portfolio Sorts
  • 7.5 More Performance Evaluation
  • 7.6 The Security Market Line and Beta Portfolios
  • 7.7 Exercises
  • 8 Size Sorts and p-Hacking
  • 8.1 Data Preparation
  • 8.2 Size Distribution
  • 8.3 Univariate Size Portfolios with Flexible Breakpoints
  • 8.4 Weighting Schemes for Portfolios
  • 8.5 P-hacking and Non-standard Errors
  • 8.6 The Size-Premium Variation
  • 8.7 Exercises
  • 9 Value and Bivariate Sorts
  • 9.1 Data Preparation
  • 9.2 Book-to-Market Ratio
  • 9.3 Independent Sorts
  • 9.4 Dependent Sorts
  • 9.5 Exercises
  • 10 Replicating Fama and French Factors
  • 10.1 Data Preparation
  • 10.2 Portfolio Sorts
  • 10.3 Fama and French Factor Returns
  • 10.4 Replication Evaluation
  • 10.5 Exercises
  • 11 Fama-MacBeth Regressions
  • 11.1 Data Preparation
  • 11.2 Cross-sectional Regression
  • 11.3 Time-Series Aggregation
  • 11.4 Exercises
  • IV Modeling & Machine Learning
  • 12 Fixed Effects and Clustered Standard Errors
  • 12.1 Data Preparation
  • 12.2 Fixed Effects
  • 12.3 Clustering Standard Errors
  • 12.4 Exercises
  • 13 Difference in Differences
  • 13.1 Data Preparation
  • 13.2 Panel Regressions
  • 13.3 Visualizing Parallel Trends
  • 13.4 Exercises
  • 14 Factor Selection via Machine Learning
  • 14.1 Brief  Theoretical Background
  • 14.1.1 Ridge regression
  • 14.1.2 Lasso
  • 14.1.3 Elastic Net
  • 14.2 Data Preparation
  • 14.3 The Tidymodels Workflow
  • 14.3.1 Pre-process data
  • 14.3.2 Build a model
  • 14.3.3 Fit a model
  • 14.3.4 Tune a model
  • 14.3.5 Parallelized workflow
  • 14.4 Exercises
  • 15 Option Pricing via Machine Learning
  • 15.1 Regression Trees and Random Forests
  • 15.2 Neural Networks
  • 15.3 Option Pricing
  • 15.4 Learning Black-Scholes
  • 15.4.1 Data simulation
  • 15.4.2 Single layer networks and random forests
  • 15.4.3 Deep neural networks
  • 15.4.4 Universal approximation
  • 15.5 Prediction Evaluation
  • 15.6 Exercises
  • V Portfolio Optimization
  • 16 Parametric Portfolio Policies
  • 16.1 Data Preparation
  • 16.2 Parametric Portfolio Policies
  • 16.3 Computing Portfolio Weights
  • 16.4 Portfolio Performance
  • 16.5 Optimal Parameter Choice
  • 16.6 More Model Specifications
  • 16.7 Exercises
  • 17 Constrained Optimization and Backtesting
  • 17.1 Data Preparation
  • 17.2 Recap of Portfolio Choice
  • 17.3 Estimation Uncertainty and Transaction Costs
  • 17.4 Optimal Portfolio Choice
  • 17.5 Constrained Optimization
  • 17.6 Out-of-Sample Backtesting
  • 17.7 Exercises
  • A Cover Design
  • B Clean Enhanced TRACE with R
  • Bibliography
  • Index
Show More

Additional information

Veldu vöru

Rafbók til eignar

Reviews

There are no reviews yet.

Be the first to review “Tidy Finance with R”

Netfang þitt verður ekki birt. Nauðsynlegir reitir eru merktir *

Aðrar vörur

1
    1
    Karfan þín
    Against Borders
    Against Borders
    Veldu vöru:

    Rafbók til eignar

    1 X 2.590 kr. = 2.590 kr.