Urban Drainage

Höfundur David Butler; Christopher James Digman; Christos Makropoulos; John W. Davies

Útgefandi Taylor & Francis

Snið ePub

Print ISBN 9781498752930

Útgáfa 4

Útgáfuár 2018

10.190 kr.

Description

Efnisyfirlit

  • Cover
  • Half Title
  • Title Page
  • Copyright Page
  • Contents
  • Readership
  • Acknowledgements
  • Notation
  • Abbreviations
  • Authors
  • 1. Introduction
  • 1.1 What is urban drainage?
  • 1.2 Effects of urbanisation
  • 1.3 Urban drainage priorities
  • 1.3.1 Public health
  • 1.3.2 Minimising adverse impacts
  • 1.4 History
  • 1.4.1 Ancient civilisations
  • 1.4.2 Ancient to modern
  • 1.4.3 London
  • 1.5 Geography
  • 1.6 Types of system
  • 1.6.1 Combined systems
  • 1.6.2 Separate systems
  • 1.6.3 Hybrid and partially separate systems
  • 1.6.4 Non-pipe systems
  • 1.7 Urban water system
  • 1.8 Changing context
  • Problems
  • Key source
  • References
  • 2. Water quality
  • 2.1 Introduction
  • 2.2 Basics
  • 2.2.1 Strength
  • 2.2.2 Equivalent concentrations
  • 2.3 Parameters
  • 2.3.1 Sampling and analysis
  • 2.3.2 Solids
  • 2.3.2.1 Gross solids
  • 2.3.2.2 Grit
  • 2.3.2.3 Suspended solids
  • 2.3.2.4 Volatile solids
  • 2.3.3 Oxygen
  • 2.3.3.1 Dissolved oxygen
  • 2.3.4 Organic compounds
  • 2.3.4.1 Biochemical oxygen demand (BOD5)
  • 2.3.4.2 Chemical oxygen demand (COD)
  • 2.3.4.3 Total organic carbon (TOC)
  • 2.3.5 Nitrogen
  • 2.3.5.1 Organic nitrogen (org.N)
  • 2.3.5.2 Ammonia nitrogen (NH3–N)
  • 2.3.5.3 Nitrite and nitrate nitrogen (NO–2 – N, NO–3 –N)
  • 2.3.6 Phosphorus
  • 2.3.7 Sulphur
  • 2.3.8 Hydrocarbons
  • 2.3.9 FOG
  • 2.3.10 Heavy metals and synthetic compounds
  • 2.3.11 Micro-organisms
  • 2.3.12 Priority substances
  • 2.4 Processes
  • 2.4.1 Hydrolysis
  • 2.4.2 Aerobic degradation
  • 2.4.2.1 Nitrification
  • 2.4.3 Denitrification
  • 2.4.4 Anaerobic degradation
  • 2.5 Receiving water impacts
  • 2.5.1 Emissions
  • 2.5.2 Processes
  • 2.5.3 Impacts
  • 2.5.3.1 DO depletion
  • 2.5.3.2 Eutrophication
  • 2.5.3.3 Toxics
  • 2.5.3.4 Public health
  • 2.5.3.5 Aesthetics
  • 2.6 Receiving water standards
  • 2.6.1 Legislation and regulatory regime
  • 2.6.1.1 Urban Waste Water Treatment Directive
  • 2.6.1.2 Bathing Water Directive
  • 2.6.1.3 Water Framework Directive
  • 2.6.1.4 Marine Strategy Framework Directive
  • 2.6.2 Permitting intermittent discharges
  • 2.6.3 Environmental quality standards
  • 2.6.3.1 Aquatic life standards
  • 2.6.3.2 Shellfish standards
  • 2.6.3.3 Bathing standards
  • 2.6.3.4 Amenity standards
  • 2.7 Urban Pollution Management (UPM)
  • Problems
  • Key sources
  • References
  • 3. Wastewater
  • 3.1 Introduction
  • 3.2 Domestic
  • 3.2.1 Water use
  • 3.2.1.1 Climate
  • 3.2.1.2 Demography
  • 3.2.1.3 Socio-economic factors
  • 3.2.1.4 Development type
  • 3.2.1.5 Extent of metering and water conservation measures
  • 3.2.1.6 Quantification
  • 3.2.2 Water–wastewater relationship
  • 3.2.3 Temporal variability
  • 3.2.3.1 Long term
  • 3.2.3.2 Annual
  • 3.2.3.3 Weekly
  • 3.2.3.4 Diurnal
  • 3.2.4 Appliances
  • 3.3 Non-domestic
  • 3.3.1 Commercial
  • 3.3.2 Industrial
  • 3.4 Infiltration and inflow
  • 3.4.1 Problems
  • 3.4.2 Quantification
  • 3.4.3 Exfiltration
  • 3.5 Wastewater quality
  • 3.5.1 Pollutant sources
  • 3.5.1.1 Human excreta
  • 3.5.1.2 Toilet/WC
  • 3.5.1.3 Food
  • 3.5.1.4 Washing/laundry
  • 3.5.1.5 Industry
  • 3.5.1.6 Carriage water and groundwater
  • 3.5.2 Pollutant levels
  • Problems
  • Key sources
  • References
  • 4. Rainfall
  • 4.1 Introduction
  • 4.2 Measurement
  • 4.2.1 Rain gauges
  • 4.2.1.1 Siting
  • 4.2.2 Radar
  • 4.2.3 Satellites
  • 4.2.4 Data requirements
  • 4.3 Analysis
  • 4.3.1 Basics
  • 4.3.2 IDF relationships
  • 4.3.2.1 Definition
  • 4.3.2.2 Derivation
  • 4.3.2.3 IDFs in practice
  • 4.3.3 Wallingford Procedure
  • 4.3.4 Areal extent
  • 4.3.5 Flood Estimation Handbook
  • 4.4 Single events
  • 4.4.1 Synthetic design storms
  • 4.4.2 Historical single events
  • 4.4.3 Critical input hyetograph (Superstorm)
  • 4.5 Multiple events
  • 4.5.1 Historical time series
  • 4.5.1.1 Annual time series
  • 4.5.2 Synthetic time series
  • 4.5.2.1 Synthetic series
  • 4.5.2.2 Stochastic rainfall generation
  • 4.5.2.3 Stochastic disaggregation models
  • 4.6 Climate change
  • 4.6.1 Causes
  • 4.6.2 Future trends
  • 4.6.3 Design rainfall under climate change
  • 4.6.4 Implications
  • 4.6.5 Solutions
  • Problems
  • Key sources
  • References
  • 5. Stormwater
  • 5.1 Introduction
  • 5.2 Runoff generation
  • 5.2.1 Initial losses
  • 5.2.1.1 Interception and wetting losses
  • 5.2.1.2 Depression storage
  • 5.2.1.3 Representation
  • 5.2.2 Continuing losses
  • 5.2.2.1 Evapo-transpiration
  • 5.2.2.2 Infiltration
  • 5.2.2.3 Representation
  • 5.2.3 Fixed runoff equation
  • 5.2.3.1 PIMP
  • 5.2.3.2 SOIL
  • 5.2.3.3 UCWI
  • 5.2.3.4 Limitations
  • 5.2.4 Variable runoff equation
  • 5.2.4.1 Impervious area runoff
  • 5.2.4.2 Pervious area runoff
  • 5.2.5 UK Water Industry Research runoff equation
  • 5.3 Overland flow
  • 5.3.1 Unit hydrographs
  • 5.3.2 Synthetic unit hydrographs
  • 5.3.3 Time–area diagrams
  • 5.3.4 Reservoir models
  • 5.3.5 Kinematic wave
  • 5.4 Stormwater quality
  • 5.4.1 Pollutant sources
  • 5.4.1.1 Atmospheric pollution
  • 5.4.1.2 Vehicles
  • 5.4.1.3 Buildings and roads
  • 5.4.1.4 Animals
  • 5.4.1.5 De-icing
  • 5.4.1.6 Urban debris
  • 5.4.1.7 Spills/leaks
  • 5.4.2 Surface pollutants
  • 5.4.3 Pollutant levels
  • 5.4.4 Representation
  • 5.4.4.1 Event mean concentrations
  • 5.4.4.2 Regression equations
  • 5.4.4.3 Buildup
  • 5.4.4.4 Washoff
  • 5.4.5 Sewer misconnections
  • Problems
  • Key sources
  • References
  • 6. System components and layout
  • 6.1 Introduction
  • 6.2 Building drainage
  • 6.2.1 Soil and waste drainage
  • 6.2.1.1 Inside
  • 6.2.1.2 Outside
  • 6.2.1.3 Components
  • 6.2.1.4 Layout
  • 6.2.2 Roof drainage
  • 6.3 System components
  • 6.3.1 Sewers
  • 6.3.1.1 Vertical alignment
  • 6.3.1.2 Horizontal alignment
  • 6.3.2 Manholes
  • 6.3.3 Gully inlets
  • 6.3.4 Ventilation
  • 6.4 Design
  • 6.4.1 Stages
  • 6.4.2 Sewers for adoption
  • Problems
  • Key sources
  • References
  • 7. Hydraulics
  • 7.1 Introduction
  • 7.2 Basic principles
  • 7.2.1 Pressure
  • 7.2.2 Continuity of flow
  • 7.2.3 Flow classification
  • 7.2.4 Laminar and turbulent flow
  • 7.2.5 Energy and head
  • 7.3 Pipe flow
  • 7.3.1 Head (energy) losses
  • 7.3.2 Friction losses
  • 7.3.3 Friction factor
  • 7.3.4 Wallingford charts and tables
  • 7.3.4.1 Charts
  • 7.3.4.2 Tables
  • 7.3.5 Approximate equations
  • 7.3.6 Roughness
  • 7.3.7 Local losses
  • 7.4 Part-full pipe flow
  • 7.4.1 Normal depth
  • 7.4.2 Geometric and hydraulic elements
  • 7.4.3 Butler-Pinkerton charts
  • 7.4.4 Non-circular sections
  • 7.4.5 Surcharge
  • 7.4.6 Velocity profiles
  • 7.4.7 Minimum velocity
  • 7.4.8 Minimum shear stress
  • 7.4.9 Maximum velocity
  • 7.5 Open-channel flow
  • 7.5.1 Uniform flow
  • 7.5.1.1 Manning’s equation
  • 7.5.2 Nonuniform flow
  • 7.5.3 Specific energy
  • 7.5.4 Critical, subcritical, and supercritical flow
  • 7.5.5 Gradually varied flow
  • 7.5.6 Rapidly varied flow
  • Problems
  • Key source
  • References
  • 8. Hydraulic features
  • 8.1 Flow controls
  • 8.1.1 Orifice plate
  • 8.1.2 Penstock
  • 8.1.3 Vortex regulator
  • 8.1.4 Throttle pipe
  • 8.1.5 Flap valve
  • 8.1.6 Summary of characteristics of flow control devices
  • 8.2 Weirs
  • 8.2.1 Transverse weirs
  • 8.2.2 Side weirs
  • 8.3 Sewer drops
  • 8.3.1 Vortex drop shafts
  • 8.3.2 Other sewer drop arrangements
  • 8.4 Inverted siphons
  • 8.5 Gully spacing
  • 8.5.1 Road channel flow
  • 8.5.2 Gully hydraulic efficiency
  • 8.5.3 Spacing
  • 8.5.3.1 Intermediate gullies
  • 8.5.3.2 Initial gullies
  • 8.5.3.3 Potential optimisation
  • 8.6 Culverts
  • 8.6.1 Culverts in urban drainage
  • 8.6.2 Flow cases
  • Problems
  • References
  • 9. Foul sewers
  • 9.1 Introduction
  • 9.1.1 Flow regime
  • 9.2 Design
  • 9.2.1 Choice of design period
  • 9.2.2 Criterion of satisfactory service
  • 9.3 Large sewers
  • 9.3.1 Flow patterns
  • 9.3.2 Dry weather flow
  • 9.3.3 Domestic flow (PG)
  • 9.3.3.1 Population (P)
  • 9.3.3.2 Per capita water consumption (G)
  • 9.3.4 Infiltration (I)
  • 9.3.4.1 Measurement
  • 9.3.4.2 Prevention
  • 9.3.5 Non-domestic flows (E)
  • 9.3.6 Peak flow
  • 9.3.7 Design criteria
  • 9.3.7.1 Capacity
  • 9.3.7.2 Self-cleansing
  • 9.3.7.3 Roughness
  • 9.3.7.4 Minimum pipe sizes
  • 9.3.8 Design method
  • 9.4 Small sewers
  • 9.4.1 Discharge unit method
  • 9.4.1.1 Probabilistic framework
  • 9.4.1.2 Design criterion
  • 9.4.1.3 Mixed appliances
  • 9.4.2 Design criteria
  • 9.4.3 Choice of methods
  • 9.5 Solids transport
  • 9.5.1 Large sewers
  • 9.5.2 Small sewers
  • 9.5.3 Sewer blockage
  • Problems
  • Key sources
  • References
  • 10. Storm sewers
  • 10.1 Introduction
  • 10.1.1 Flow regime
  • 10.2 Design
  • 10.2.1 Design storm
  • 10.2.2 Optimal design
  • 10.2.3 Return period and design life probability of exceedance
  • 10.3 Contributing area
  • 10.3.1 Catchment area measurement
  • 10.3.2 Land use
  • 10.3.3 Urban creep
  • 10.3.4 Runoff coefficient
  • 10.3.5 Time of concentration
  • 10.3.5.1 Time of entry
  • 10.3.5.2 Time of flow
  • 10.4 Rational Method
  • 10.4.1 Steady-state runoff
  • 10.4.2 Critical rainfall intensity
  • 10.4.2.1 Small areas
  • 10.4.3 Modified Rational Method
  • 10.4.3.1 Volumetric runoff coefficient (Cv)
  • 10.4.3.2 Dimensionless routing coefficient (CR)
  • 10.4.4 Design criteria
  • 10.4.4.1 Capacity
  • 10.4.4.2 Self-cleansing
  • 10.4.4.3 Roughness
  • 10.4.4.4 Minimum pipe sizes
  • 10.4.5 Design method
  • 10.4.6 Limitations
  • 10.5 Time-area method
  • 10.5.1 The need
  • 10.5.2 Basic diagram
  • 10.5.3 Diagram construction
  • 10.6 Hydrograph methods
  • 10.6.1 Time-Area Method
  • 10.6.1.1 Limitations
  • 10.6.2 Level pool routing method
  • 10.6.3 Limitations
  • 10.7 Undeveloped site runoff
  • Problems
  • Key sources
  • References
  • 11. Flooding
  • 11.1 Introduction
  • 11.2 Exceedance
  • 11.2.1 Systems interface
  • 11.2.2 Exceedance flow
  • 11.3 Standards
  • 11.4 Flood risk
  • 11.4.1 Flood damage
  • 11.4.1.1 Flood depth
  • 11.4.2 Risk assessment
  • 11.5 Management
  • 11.5.1 Options
  • 11.5.2 Surface flow features
  • 11.5.2.1 Gully inlets
  • 11.5.2.2 Surface pathways
  • 11.5.2.3 Surface storage
  • 11.5.2.4 Safety
  • 11.5.3 Flood protection of buildings
  • 11.5.3.1 Layout
  • 11.5.3.2 Fabric
  • 11.6 Flood resilience
  • 11.6.1 Properties
  • 11.6.2 Performance
  • Problems
  • Key sources
  • References
  • 12. Combined sewers and combined sewer overflows
  • 12.1 Background
  • 12.2 System flows
  • 12.2.1 Low flow rates
  • 12.3 The role of CSOs
  • 12.3.1 Flow and pollutants
  • 12.3.2 First foul flush
  • 12.4 Control of pollution from combined sewer systems
  • 12.4.1 CSO settings and permits
  • 12.4.1.1 Technical Committee Formula A
  • 12.4.1.2 Scottish Development Department (SDD)
  • 12.4.1.3 Urban pollution management
  • 12.4.2 Monitoring
  • 12.5 Approaches to CSO design
  • 12.5.1 High side weir
  • 12.5.1.1 Principles
  • 12.5.1.2 Dimensions and layout
  • 12.5.2 Screens
  • 12.5.2.1 Principles
  • 12.5.2.2 Development
  • 12.5.2.3 Dimensions and layout
  • 12.5.3 Stilling pond
  • 12.5.3.1 Principles
  • 12.5.3.2 Development
  • 12.5.3.3 Dimensions and layout
  • 12.5.4 Hydrodynamic vortex separator
  • 12.5.4.1 Principles
  • 12.5.4.2 Development
  • 12.5.4.3 Dimensions and layout
  • 12.5.5 Storage
  • 12.5.5.1 Principles
  • 12.5.5.2 Development
  • 12.5.5.3 Dimensions and layout
  • 12.6 Effectiveness of CSOs
  • 12.6.1 Performance measures
  • 12.6.2 Role of CFD
  • 12.6.3 Gross solids
  • 12.6.4 Choice of CSO design
  • 12.7 CSO design details
  • 12.7.1 Diameter of inflow pipe
  • 12.7.2 Creating good inlet flow conditions
  • 12.7.3 Weirs
  • 12.7.4 Selecting, sizing, and accommodating the screen
  • 12.7.5 Control of outflow
  • 12.7.6 Chamber invert
  • 12.7.7 Design return period
  • 12.7.8 Top water level
  • 12.7.9 Access
  • Problems
  • Key sources
  • References
  • 13. Storage
  • 13.1 Function of storage
  • 13.2 Overall design
  • 13.2.1 Online
  • 13.2.2 Offline
  • 13.2.3 Flow control
  • 13.3 Sizing
  • 13.3.1 Preliminary storage sizing
  • 13.3.2 Storage routing
  • 13.4 Level pool (or reservoir) routing
  • 13.5 Alternative routing procedure
  • Problems
  • References
  • 14. Pumped systems
  • 14.1 Why use a pumping system?
  • 14.2 General arrangement of a pumping system
  • 14.3 Hydraulic design
  • 14.3.1 Pump characteristics
  • 14.3.2 System characteristics
  • 14.3.3 Power
  • 14.3.4 Pumps in parallel
  • 14.3.5 Suction and delivery pipes
  • 14.4 Rising mains
  • 14.4.1 Differences from gravity sewers
  • 14.4.1.1 Hydraulic gradient
  • 14.4.1.2 Flow is not continuous
  • 14.4.1.3 Power input
  • 14.4.1.4 The pipes are under pressure
  • 14.4.2 Design features
  • 14.4.3 Surge
  • 14.5 Types of pump
  • 14.6 Pumping station design
  • 14.6.1 Main elements
  • 14.6.1.1 Wet well–dry well
  • 14.6.1.2 Wet well only
  • 14.6.2 Number of pumps
  • 14.6.3 Control
  • 14.6.4 Sump volume
  • 14.6.5 Flow arrangements
  • 14.6.6 Maintenance
  • 14.6.7 Energy demands
  • 14.7 Non-gravity systems
  • 14.8 Energy use
  • Problems
  • Key sources
  • References
  • 15. Structural design and construction
  • 15.1 Types of construction
  • 15.2 Pipes
  • 15.2.1 General
  • 15.2.2 Materials
  • 15.2.2.1 Clay
  • 15.2.2.2 Concrete
  • 15.2.2.3 Ductile iron
  • 15.2.2.4 Steel
  • 15.2.2.5 Unplasticised PVC (PVC-U)
  • 15.2.2.6 Polyethylene (PE)
  • 15.2.2.7 Other materials
  • 15.2.2.8 Sizes
  • 15.2.3 Pipe joints
  • 15.2.3.1 Spigot and socket
  • 15.2.3.2 Sleeve
  • 15.2.3.3 Bolted flange joints
  • 15.2.3.4 Fusion jointing
  • 15.3 Structural design
  • 15.3.1 Introduction
  • 15.3.2 Rigid pipeline design
  • 15.3.2.1 Soil load, Wc
  • 15.3.2.2 Concentrated surcharge load
  • 15.3.2.3 Liquid load
  • 15.3.2.4 Strength
  • 15.4 Site investigation
  • 15.5 Open-trench construction
  • 15.5.1 Excavation
  • 15.5.2 Pipe laying
  • 15.6 TunnelLing
  • 15.6.1 Lining
  • 15.6.1.1 Primary lining
  • 15.6.1.2 Secondary lining
  • 15.6.2 Ground treatment and control of groundwater
  • 15.6.2.1 Dewatering
  • 15.6.2.2 Ground freezing
  • 15.6.2.3 Injection of grouts or chemicals
  • 15.6.2.4 Compressed air
  • 15.6.3 Excavation
  • 15.7 Trenchless methods
  • 15.7.1 Pipejacking
  • 15.7.2 Microtunnelling
  • 15.7.3 Auger boring
  • 15.7.3.1 Directional drilling (DD)
  • 15.7.3.2 Impact moling
  • 15.7.3.3 Pipe ramming
  • 15.7.3.4 Timber headings
  • 15.8 Costs
  • 15.8.1 Construction costs
  • 15.8.2 Carbon accounting
  • Problems
  • Key sources
  • References
  • British Standards
  • 16. Sediments
  • 16.1 Introduction
  • 16.2 Origins
  • 16.2.1 Definition
  • 16.2.2 Sources
  • 16.3 Effects
  • 16.3.1 Problems
  • 16.3.2 Hydraulic
  • 16.3.2.1 Suspension
  • 16.3.2.2 Geometry
  • 16.3.2.3 Bed roughness
  • 16.3.3 Pollutional
  • 16.4 Transport
  • 16.4.1 Entrainment
  • 16.4.2 Transport
  • 16.4.3 Deposition
  • 16.4.4 Sediment beds and bed-load transport
  • 16.5 Characteristics
  • 16.5.1 Deposited sediment
  • 16.5.1.1 Physical characteristics
  • 16.5.1.2 Chemical characteristics
  • 16.5.1.3 Significance of deposits
  • 16.5.2 Mobile sediment
  • 16.5.2.1 Suspension
  • 16.5.2.2 Near-bed
  • 16.5.2.3 Granular bed-load
  • 16.5.2.4 Particle size
  • 16.6 Self-cleansing design
  • 16.6.1 Velocity based
  • 16.6.2 Tractive force based
  • 16.6.3 The CIRIA method
  • 16.6.3.1 Self-cleansing
  • 16.6.3.2 Movement criteria
  • 16.6.3.3 Design procedure
  • 16.6.3.4 Limitations
  • Problems
  • Key sources
  • References
  • 17. Operation and maintenance
  • 17.1 Introduction
  • 17.2 Maintenance strategies
  • 17.2.1 Public health
  • 17.2.2 Asset management
  • 17.2.3 Maintain hydraulic capacity
  • 17.2.4 Minimise pollution
  • 17.2.5 Minimise disruption
  • 17.2.6 Reactive maintenance
  • 17.2.7 Planned maintenance
  • 17.2.8 Operational functions
  • 17.2.9 Role of design
  • 17.2.10 Predicting failure
  • 17.3 Sewer location and inspection
  • 17.3.1 Applications
  • 17.3.2 Frequency
  • 17.3.3 Locational survey
  • 17.3.4 Closed-circuit television (CCTV)
  • 17.3.4.1 Propulsion
  • 17.3.4.2 Camera operation
  • 17.3.5 Manual inspection
  • 17.3.6 Other techniques
  • 17.3.6.1 Sonar
  • 17.3.6.2 Infrared
  • 17.3.6.3 Sewer profiling
  • 17.3.6.4 Alternative approaches
  • 17.3.7 Data storage and management
  • 17.4 Sewer cleaning techniques
  • 17.4.1 Objectives
  • 17.4.2 Problems
  • 17.4.2.1 Gross solids (input)
  • 17.4.2.2 FOG/scale (input)
  • 17.4.2.3 Sediment (input)
  • 17.4.2.4 Defects (system)
  • 17.4.2.5 Traps (system)
  • 17.4.2.6 Intruding laterals (system)
  • 17.4.2.7 Tree roots (system)
  • 17.4.3 Cleaning approaches
  • 17.4.3.1 Rodding or boring
  • 17.4.3.2 Winching or dragging
  • 17.4.3.3 Jetting
  • 17.4.3.4 Flushing
  • 17.4.3.5 Hand excavation
  • 17.4.3.6 Invert traps
  • 17.4.3.7 Gully pots
  • 17.4.4 Comparison of cleaning methods
  • 17.4.5 FOG control
  • 17.4.5.1 At source
  • 17.4.5.2 Recycling
  • 17.4.5.3 Chemical treatment
  • 17.4.5.4 Bio-augmentation
  • 17.5 Ancillary and network equipment maintenance
  • 17.6 SuDS
  • 17.7 Health and safety
  • 17.7.1 Atmospheric hazards
  • 17.7.2 Physical injury
  • 17.7.3 Infectious diseases
  • 17.7.4 Safety equipment
  • 17.7.5 Rodent control
  • 17.8 Gas generation and control
  • 17.8.1 Mechanisms
  • 17.8.2 Favourable conditions
  • 17.8.3 Sulphide buildup
  • 17.8.4 Control
  • 17.8.4.1 Sewerage detail design
  • 17.8.4.2 Ventilation
  • 17.8.4.3 Aeration
  • 17.8.4.4 Oxidation
  • 17.8.4.5 Chemical addition
  • Problems
  • Key sources
  • References
  • 18. Rehabilitation
  • 18.1 Introduction
  • 18.1.1 The problem
  • 18.1.2 Sewerage Rehabilitation Manual
  • 18.1.3 The need for rehabilitation
  • 18.1.4 Repair, renovation, and replacement
  • 18.2 SRM procedure
  • 18.2.1 Steps in the procedure
  • 18.2.2 Integrated approach
  • 18.2.2.1 Hydraulic
  • 18.2.2.2 Environmental
  • 18.2.2.3 Structural
  • 18.2.2.4 Operations and maintenance
  • 18.2.2.5 Developing the plan
  • 18.2.2.6 Implementation
  • 18.3 Methods of structural repair and renovation
  • 18.3.1 Man-entry sewers
  • 18.3.1.1 Repair
  • 18.3.1.2 Renovation
  • 18.3.2 Non-man-entry sewers
  • 18.3.2.1 Repair
  • 18.3.2.2 Renovation
  • 18.3.3 Choice of method
  • 18.3.4 Associated work
  • 18.3.4.1 Laterals
  • 18.3.4.2 Cleaning
  • 18.3.4.3 Overpumping
  • 18.4 Hydraulic rehabilitation
  • 18.4.1 Reduce hydraulic inputs to piped system
  • 18.4.2 Maximize capabilities of the existing system
  • 18.4.3 Adjust system to cause attenuation of peak flows
  • 18.4.4 Increase capacity of the system
  • 18.5 Balancing cost and risk
  • Problems
  • Key sources
  • References
  • 19. Modelling in practice
  • 19.1 Models and urban drainage engineering
  • 19.1.1 Development of flow models
  • 19.1.2 Model types
  • 19.2 Urban drainage models in context
  • 19.2.1 The modeller
  • 19.2.2 Confidence in the model
  • 19.2.3 Model use
  • 19.3 Elements of urban drainage models
  • 19.3.1 Overview of the components
  • 19.3.2 Rainfall
  • 19.3.3 Rainfall to runoff
  • 19.3.4 Overland flow direct from runoff
  • 19.3.5 Dry weather flow
  • 19.3.6 Infiltration
  • 19.3.7 Surface flooding
  • 19.4 Modelling unsteady flow
  • 19.4.1 The Saint-Venant equations
  • 19.4.2 Simplifications of the full equations
  • 19.4.3 Numerical methods of solution
  • 19.4.4 Surcharge
  • 19.5 Setting up and validating a system model
  • 19.5.1 Defining the model purpose and detail
  • 19.5.2 Input data
  • 19.5.3 Model testing
  • 19.5.4 Flow surveys
  • 19.5.5 Model calibration/verification against measured flow data
  • 19.5.6 Evaluating confidence
  • 19.5.7 Documentation
  • 19.6 Modelling flooding
  • 19.6.1 DTM/DEMs
  • 19.6.2 Virtual flood cones
  • 19.6.3 One-dimensional–two-dimensional (1D–2D) coupled models
  • 19.6.4 Rapid flood spreading models
  • 19.7 Water quality modelling
  • 19.7.1 The processes to be modelled
  • 19.7.2 Wastewater inflow
  • 19.7.3 Catchment surface
  • 19.7.4 Gully pots
  • 19.7.5 Transport through the system
  • 19.7.6 Pipe and tank deposits
  • 19.8 Modelling pollutant transport
  • 19.8.1 Advection/dispersion
  • 19.8.2 Completely mixed “tank”
  • 19.8.3 Sediment transport
  • 19.8.3.1 Mechanics
  • 19.8.3.2 Sediment bed
  • 19.8.3.3 Solid attachment
  • 19.8.4 Gross solids
  • 19.9 Modelling pollutant transformation
  • 19.9.1 Conservative pollutants
  • 19.9.2 Simple decay expressions
  • 19.9.3 Complex processes approach
  • 19.9.3.1 Oxygen balance
  • 19.9.3.2 Reaeration
  • 19.9.3.3 Oxygen consumption in the bulk flow
  • 19.9.3.4 Oxygen consumption in the biofilm
  • 19.9.3.5 Oxygen consumption in the sediment
  • 19.10 Using water quality models
  • 19.10.1 Model applications
  • 19.10.2 Types of sewer quality models
  • 19.10.3 Types and complexity of river quality models
  • 19.11 Planning an integrated study
  • 19.11.1 Components to consider
  • 19.11.1.1 Drivers
  • 19.11.1.2 Catchment boundary
  • 19.11.1.3 Waterbodies
  • 19.11.1.4 River modelling approach
  • 19.11.1.5 Point source discharges
  • 19.11.1.6 Rainfall and evaporation
  • 19.11.2 Input data and model calibration/verification
  • 19.11.3 Data collection in sewers and receiving waters
  • Problems
  • Key sources
  • References
  • 20. Innovations in modelling
  • 20.1 Introduction
  • 20.2 Alternative, non-physically based, modelling approaches
  • 20.2.1 Empirical models
  • 20.2.2 Artificial neural networks
  • 20.2.3 Conceptual or meta-models
  • 20.2.4 Stochastic models
  • 20.3 Integrated modelling
  • 20.3.1 Why do we need integrated models?
  • 20.3.2 Defining and classifying the level of integration
  • 20.3.3 Methods and tools for integrated system modelling and design
  • 20.3.4 Integrated control
  • 20.3.4.1 Multi-objective optimisation
  • 20.4 Coupling models to other models: Emerging standards
  • 20.5 Calibration aspects for integrated urban drainage systems
  • 20.5.1 Optimisation methods
  • 20.6 Uncertainty analysis
  • 20.6.1 Types of uncertainty in urban drainage modelling
  • 20.6.2 Uncertainty analysis in urban drainage modelling
  • Problems
  • Key sources
  • References
  • 21. Stormwater management (SuDS)
  • 21.1 Introduction
  • 21.2 Devices
  • 21.2.1 Inlet controls
  • 21.2.1.1 Blue roofs
  • 21.2.1.2 Green roofs
  • 21.2.1.3 Rainwater harvesting and water butts
  • 21.2.1.4 Paved area ponding
  • 21.2.2 Infiltration devices
  • 21.2.3 Vegetated surfaces
  • 21.2.4 Pervious pavements
  • 21.2.5 Filter drains
  • 21.2.6 Infiltration basins
  • 21.2.7 Detention basins
  • 21.2.8 Ponds
  • 21.2.9 Constructed wetlands
  • 21.3 Elements of design
  • 21.3.1 Rainfall
  • 21.3.2 Runoff
  • 21.3.3 Conveyance
  • 21.3.4 Inlets and outlets
  • 21.3.5 Storage volume related to inflow and outflow
  • 21.3.6 Infiltration from a pervious pavement sub-base
  • 21.3.7 Infiltration from a soakaway or infiltration trench
  • 21.3.7.1 BRE Digest 365 method
  • 21.3.7.2 CIRIA 156 method
  • 21.3.8 Water quality
  • 21.3.8.1 Mass balance
  • 21.3.8.2 Treatment volume
  • 21.3.9 Amenity and biodiversity
  • 21.3.10 Modelling
  • 21.4 SuDS applications
  • 21.4.1 Management train
  • 21.4.1.1 Retrofit
  • 21.5 Issues
  • 21.5.1 Long-term performance
  • 21.5.1.1 Maintenance
  • 21.5.1.2 Adoption
  • 21.5.1.3 Costs
  • 21.5.1.4 Planning
  • 21.5.1.5 Groundwater pollution
  • 21.6 Other stormwater management measures
  • 21.6.1 Oil separators
  • 21.6.1.1 Non-structural measures
  • 21.6.1.2 Public attitudes and community engagement
  • Problems
  • Key sources
  • References
  • 22. Smart systems
  • 22.1 Introduction
  • 22.2 Real-time control
  • 22.2.1 Definition
  • 22.2.2 Equipment
  • 22.2.2.1 Sensors
  • 22.2.2.2 Regulators
  • 22.2.2.3 Controllers
  • 22.2.2.4 Data transmission systems
  • 22.2.3 Control
  • 22.2.3.1 Classification
  • 22.2.3.2 Control loop
  • 22.2.3.3 Control strategy
  • 22.2.4 Applicability
  • 22.2.5 Benefits and drawbacks
  • 22.3 Early warning systems
  • 22.3.1 Definition and elements
  • 22.3.1.1 Risk knowledge
  • 22.3.1.2 Monitoring and warning service
  • 22.3.1.3 Dissemination
  • 22.3.1.4 Emergency response capacity
  • 22.3.2 Forecast services
  • 22.3.2.1 Flow forecasting models
  • 22.3.2.2 Meteorological predictions
  • 22.3.2.3 Flood occurrence criteria
  • 22.4 Citizen observatories
  • Problems
  • Key sources
  • References
  • 23. Global issues
  • 23.1 Introduction
  • 23.2 Health
  • 23.3 Option selection
  • 23.3.1 Sanitation
  • 23.3.2 Storm drainage
  • 23.4 On-site sanitation
  • 23.4.1 Latrines
  • 23.4.1.1 Pit latrine
  • 23.4.1.2 VIP latrines
  • 23.4.1.3 Pour-flush latrines
  • 23.4.1.4 Composting latrines
  • 23.4.1.5 Communal latrines
  • 23.4.2 Septic tank systems
  • 23.4.3 Aqua privies
  • 23.4.4 Urine diverting dry toilets
  • 23.4.5 New technologies
  • 23.5 Off-site sanitation
  • 23.5.1 Bucket latrines
  • 23.5.2 Vault latrines
  • 23.5.3 Conventional sewerage
  • 23.5.3.1 Septicity
  • 23.5.3.2 Blockage
  • 23.5.4 Unconventional sewerage
  • 23.5.4.1 Simplified sewerage
  • 23.5.4.2 Settled sewerage
  • 23.6 Storm drainage
  • 23.6.1 Flooding
  • 23.6.2 Open drainage
  • 23.6.2.1 Open channels
  • 23.6.2.2 Road-as-drain
  • 23.6.3 Closed drainage
  • 23.6.3.1 Conventional drainage
  • 23.6.3.2 Dual drainage
  • 23.6.4 Stormwater management
  • 23.7 Grey water management
  • 23.7.1 Options
  • Problems
  • Key sources
  • References
  • 24. Towards sustainable urban water management
  • 24.1 Introduction
  • 24.1.1 Sustainable development
  • 24.1.2 Sustainability
  • 24.1.3 Sustainable urban water management
  • 24.1.4 Transition states
  • 24.2 Sustainability in urban drainage
  • 24.2.1 Objectives
  • 24.2.2 Strategies
  • 24.2.2.1 Water transport
  • 24.2.2.2 Mixing of industrial and domestic wastes
  • 24.2.2.3 Mixing of stormwater and wastewater
  • 24.2.3 Integration
  • 24.2.4 Does size matter?
  • 24.3 Steps in the right direction
  • 24.3.1 Domestic grey water recycling
  • 24.3.2 Nutrient recycling
  • 24.3.3 Heat recovery
  • 24.3.4 Disposal of domestic sanitary waste
  • 24.4 Assessing sustainability
  • 24.5 Resilience
  • 24.5.1 Definitions and objectives
  • 24.5.2 Resilience and sustainability
  • 24.5.3 Resilience in strategic planning
  • 24.6 Urban futures
  • Problems
  • Key sources
  • References
  • Index
Show More

Additional information

Veldu vöru

Rafbók til eignar

Reviews

There are no reviews yet.

Be the first to review “Urban Drainage”

Netfang þitt verður ekki birt. Nauðsynlegir reitir eru merktir *

Aðrar vörur

1
    1
    Karfan þín
    An Introduction to Sociolinguistics
    An Introduction to Sociolinguistics
    Veldu vöru:

    Rafbók til eignar

    1 X 6.290 kr. = 6.290 kr.