Description
Efnisyfirlit
- Cover
- Half Title
- Title Page
- Copyright Page
- Contents
- Readership
- Acknowledgements
- Notation
- Abbreviations
- Authors
- 1. Introduction
- 1.1 What is urban drainage?
- 1.2 Effects of urbanisation
- 1.3 Urban drainage priorities
- 1.3.1 Public health
- 1.3.2 Minimising adverse impacts
- 1.4 History
- 1.4.1 Ancient civilisations
- 1.4.2 Ancient to modern
- 1.4.3 London
- 1.5 Geography
- 1.6 Types of system
- 1.6.1 Combined systems
- 1.6.2 Separate systems
- 1.6.3 Hybrid and partially separate systems
- 1.6.4 Non-pipe systems
- 1.7 Urban water system
- 1.8 Changing context
- Problems
- Key source
- References
- 2. Water quality
- 2.1 Introduction
- 2.2 Basics
- 2.2.1 Strength
- 2.2.2 Equivalent concentrations
- 2.3 Parameters
- 2.3.1 Sampling and analysis
- 2.3.2 Solids
- 2.3.2.1 Gross solids
- 2.3.2.2 Grit
- 2.3.2.3 Suspended solids
- 2.3.2.4 Volatile solids
- 2.3.3 Oxygen
- 2.3.3.1 Dissolved oxygen
- 2.3.4 Organic compounds
- 2.3.4.1 Biochemical oxygen demand (BOD5)
- 2.3.4.2 Chemical oxygen demand (COD)
- 2.3.4.3 Total organic carbon (TOC)
- 2.3.5 Nitrogen
- 2.3.5.1 Organic nitrogen (org.N)
- 2.3.5.2 Ammonia nitrogen (NH3–N)
- 2.3.5.3 Nitrite and nitrate nitrogen (NO–2 – N, NO–3 –N)
- 2.3.6 Phosphorus
- 2.3.7 Sulphur
- 2.3.8 Hydrocarbons
- 2.3.9 FOG
- 2.3.10 Heavy metals and synthetic compounds
- 2.3.11 Micro-organisms
- 2.3.12 Priority substances
- 2.4 Processes
- 2.4.1 Hydrolysis
- 2.4.2 Aerobic degradation
- 2.4.2.1 Nitrification
- 2.4.3 Denitrification
- 2.4.4 Anaerobic degradation
- 2.5 Receiving water impacts
- 2.5.1 Emissions
- 2.5.2 Processes
- 2.5.3 Impacts
- 2.5.3.1 DO depletion
- 2.5.3.2 Eutrophication
- 2.5.3.3 Toxics
- 2.5.3.4 Public health
- 2.5.3.5 Aesthetics
- 2.6 Receiving water standards
- 2.6.1 Legislation and regulatory regime
- 2.6.1.1 Urban Waste Water Treatment Directive
- 2.6.1.2 Bathing Water Directive
- 2.6.1.3 Water Framework Directive
- 2.6.1.4 Marine Strategy Framework Directive
- 2.6.2 Permitting intermittent discharges
- 2.6.3 Environmental quality standards
- 2.6.3.1 Aquatic life standards
- 2.6.3.2 Shellfish standards
- 2.6.3.3 Bathing standards
- 2.6.3.4 Amenity standards
- 2.7 Urban Pollution Management (UPM)
- Problems
- Key sources
- References
- 3. Wastewater
- 3.1 Introduction
- 3.2 Domestic
- 3.2.1 Water use
- 3.2.1.1 Climate
- 3.2.1.2 Demography
- 3.2.1.3 Socio-economic factors
- 3.2.1.4 Development type
- 3.2.1.5 Extent of metering and water conservation measures
- 3.2.1.6 Quantification
- 3.2.2 Water–wastewater relationship
- 3.2.3 Temporal variability
- 3.2.3.1 Long term
- 3.2.3.2 Annual
- 3.2.3.3 Weekly
- 3.2.3.4 Diurnal
- 3.2.4 Appliances
- 3.3 Non-domestic
- 3.3.1 Commercial
- 3.3.2 Industrial
- 3.4 Infiltration and inflow
- 3.4.1 Problems
- 3.4.2 Quantification
- 3.4.3 Exfiltration
- 3.5 Wastewater quality
- 3.5.1 Pollutant sources
- 3.5.1.1 Human excreta
- 3.5.1.2 Toilet/WC
- 3.5.1.3 Food
- 3.5.1.4 Washing/laundry
- 3.5.1.5 Industry
- 3.5.1.6 Carriage water and groundwater
- 3.5.2 Pollutant levels
- Problems
- Key sources
- References
- 4. Rainfall
- 4.1 Introduction
- 4.2 Measurement
- 4.2.1 Rain gauges
- 4.2.1.1 Siting
- 4.2.2 Radar
- 4.2.3 Satellites
- 4.2.4 Data requirements
- 4.3 Analysis
- 4.3.1 Basics
- 4.3.2 IDF relationships
- 4.3.2.1 Definition
- 4.3.2.2 Derivation
- 4.3.2.3 IDFs in practice
- 4.3.3 Wallingford Procedure
- 4.3.4 Areal extent
- 4.3.5 Flood Estimation Handbook
- 4.4 Single events
- 4.4.1 Synthetic design storms
- 4.4.2 Historical single events
- 4.4.3 Critical input hyetograph (Superstorm)
- 4.5 Multiple events
- 4.5.1 Historical time series
- 4.5.1.1 Annual time series
- 4.5.2 Synthetic time series
- 4.5.2.1 Synthetic series
- 4.5.2.2 Stochastic rainfall generation
- 4.5.2.3 Stochastic disaggregation models
- 4.6 Climate change
- 4.6.1 Causes
- 4.6.2 Future trends
- 4.6.3 Design rainfall under climate change
- 4.6.4 Implications
- 4.6.5 Solutions
- Problems
- Key sources
- References
- 5. Stormwater
- 5.1 Introduction
- 5.2 Runoff generation
- 5.2.1 Initial losses
- 5.2.1.1 Interception and wetting losses
- 5.2.1.2 Depression storage
- 5.2.1.3 Representation
- 5.2.2 Continuing losses
- 5.2.2.1 Evapo-transpiration
- 5.2.2.2 Infiltration
- 5.2.2.3 Representation
- 5.2.3 Fixed runoff equation
- 5.2.3.1 PIMP
- 5.2.3.2 SOIL
- 5.2.3.3 UCWI
- 5.2.3.4 Limitations
- 5.2.4 Variable runoff equation
- 5.2.4.1 Impervious area runoff
- 5.2.4.2 Pervious area runoff
- 5.2.5 UK Water Industry Research runoff equation
- 5.3 Overland flow
- 5.3.1 Unit hydrographs
- 5.3.2 Synthetic unit hydrographs
- 5.3.3 Time–area diagrams
- 5.3.4 Reservoir models
- 5.3.5 Kinematic wave
- 5.4 Stormwater quality
- 5.4.1 Pollutant sources
- 5.4.1.1 Atmospheric pollution
- 5.4.1.2 Vehicles
- 5.4.1.3 Buildings and roads
- 5.4.1.4 Animals
- 5.4.1.5 De-icing
- 5.4.1.6 Urban debris
- 5.4.1.7 Spills/leaks
- 5.4.2 Surface pollutants
- 5.4.3 Pollutant levels
- 5.4.4 Representation
- 5.4.4.1 Event mean concentrations
- 5.4.4.2 Regression equations
- 5.4.4.3 Buildup
- 5.4.4.4 Washoff
- 5.4.5 Sewer misconnections
- Problems
- Key sources
- References
- 6. System components and layout
- 6.1 Introduction
- 6.2 Building drainage
- 6.2.1 Soil and waste drainage
- 6.2.1.1 Inside
- 6.2.1.2 Outside
- 6.2.1.3 Components
- 6.2.1.4 Layout
- 6.2.2 Roof drainage
- 6.3 System components
- 6.3.1 Sewers
- 6.3.1.1 Vertical alignment
- 6.3.1.2 Horizontal alignment
- 6.3.2 Manholes
- 6.3.3 Gully inlets
- 6.3.4 Ventilation
- 6.4 Design
- 6.4.1 Stages
- 6.4.2 Sewers for adoption
- Problems
- Key sources
- References
- 7. Hydraulics
- 7.1 Introduction
- 7.2 Basic principles
- 7.2.1 Pressure
- 7.2.2 Continuity of flow
- 7.2.3 Flow classification
- 7.2.4 Laminar and turbulent flow
- 7.2.5 Energy and head
- 7.3 Pipe flow
- 7.3.1 Head (energy) losses
- 7.3.2 Friction losses
- 7.3.3 Friction factor
- 7.3.4 Wallingford charts and tables
- 7.3.4.1 Charts
- 7.3.4.2 Tables
- 7.3.5 Approximate equations
- 7.3.6 Roughness
- 7.3.7 Local losses
- 7.4 Part-full pipe flow
- 7.4.1 Normal depth
- 7.4.2 Geometric and hydraulic elements
- 7.4.3 Butler-Pinkerton charts
- 7.4.4 Non-circular sections
- 7.4.5 Surcharge
- 7.4.6 Velocity profiles
- 7.4.7 Minimum velocity
- 7.4.8 Minimum shear stress
- 7.4.9 Maximum velocity
- 7.5 Open-channel flow
- 7.5.1 Uniform flow
- 7.5.1.1 Manning’s equation
- 7.5.2 Nonuniform flow
- 7.5.3 Specific energy
- 7.5.4 Critical, subcritical, and supercritical flow
- 7.5.5 Gradually varied flow
- 7.5.6 Rapidly varied flow
- Problems
- Key source
- References
- 8. Hydraulic features
- 8.1 Flow controls
- 8.1.1 Orifice plate
- 8.1.2 Penstock
- 8.1.3 Vortex regulator
- 8.1.4 Throttle pipe
- 8.1.5 Flap valve
- 8.1.6 Summary of characteristics of flow control devices
- 8.2 Weirs
- 8.2.1 Transverse weirs
- 8.2.2 Side weirs
- 8.3 Sewer drops
- 8.3.1 Vortex drop shafts
- 8.3.2 Other sewer drop arrangements
- 8.4 Inverted siphons
- 8.5 Gully spacing
- 8.5.1 Road channel flow
- 8.5.2 Gully hydraulic efficiency
- 8.5.3 Spacing
- 8.5.3.1 Intermediate gullies
- 8.5.3.2 Initial gullies
- 8.5.3.3 Potential optimisation
- 8.6 Culverts
- 8.6.1 Culverts in urban drainage
- 8.6.2 Flow cases
- Problems
- References
- 9. Foul sewers
- 9.1 Introduction
- 9.1.1 Flow regime
- 9.2 Design
- 9.2.1 Choice of design period
- 9.2.2 Criterion of satisfactory service
- 9.3 Large sewers
- 9.3.1 Flow patterns
- 9.3.2 Dry weather flow
- 9.3.3 Domestic flow (PG)
- 9.3.3.1 Population (P)
- 9.3.3.2 Per capita water consumption (G)
- 9.3.4 Infiltration (I)
- 9.3.4.1 Measurement
- 9.3.4.2 Prevention
- 9.3.5 Non-domestic flows (E)
- 9.3.6 Peak flow
- 9.3.7 Design criteria
- 9.3.7.1 Capacity
- 9.3.7.2 Self-cleansing
- 9.3.7.3 Roughness
- 9.3.7.4 Minimum pipe sizes
- 9.3.8 Design method
- 9.4 Small sewers
- 9.4.1 Discharge unit method
- 9.4.1.1 Probabilistic framework
- 9.4.1.2 Design criterion
- 9.4.1.3 Mixed appliances
- 9.4.2 Design criteria
- 9.4.3 Choice of methods
- 9.5 Solids transport
- 9.5.1 Large sewers
- 9.5.2 Small sewers
- 9.5.3 Sewer blockage
- Problems
- Key sources
- References
- 10. Storm sewers
- 10.1 Introduction
- 10.1.1 Flow regime
- 10.2 Design
- 10.2.1 Design storm
- 10.2.2 Optimal design
- 10.2.3 Return period and design life probability of exceedance
- 10.3 Contributing area
- 10.3.1 Catchment area measurement
- 10.3.2 Land use
- 10.3.3 Urban creep
- 10.3.4 Runoff coefficient
- 10.3.5 Time of concentration
- 10.3.5.1 Time of entry
- 10.3.5.2 Time of flow
- 10.4 Rational Method
- 10.4.1 Steady-state runoff
- 10.4.2 Critical rainfall intensity
- 10.4.2.1 Small areas
- 10.4.3 Modified Rational Method
- 10.4.3.1 Volumetric runoff coefficient (Cv)
- 10.4.3.2 Dimensionless routing coefficient (CR)
- 10.4.4 Design criteria
- 10.4.4.1 Capacity
- 10.4.4.2 Self-cleansing
- 10.4.4.3 Roughness
- 10.4.4.4 Minimum pipe sizes
- 10.4.5 Design method
- 10.4.6 Limitations
- 10.5 Time-area method
- 10.5.1 The need
- 10.5.2 Basic diagram
- 10.5.3 Diagram construction
- 10.6 Hydrograph methods
- 10.6.1 Time-Area Method
- 10.6.1.1 Limitations
- 10.6.2 Level pool routing method
- 10.6.3 Limitations
- 10.7 Undeveloped site runoff
- Problems
- Key sources
- References
- 11. Flooding
- 11.1 Introduction
- 11.2 Exceedance
- 11.2.1 Systems interface
- 11.2.2 Exceedance flow
- 11.3 Standards
- 11.4 Flood risk
- 11.4.1 Flood damage
- 11.4.1.1 Flood depth
- 11.4.2 Risk assessment
- 11.5 Management
- 11.5.1 Options
- 11.5.2 Surface flow features
- 11.5.2.1 Gully inlets
- 11.5.2.2 Surface pathways
- 11.5.2.3 Surface storage
- 11.5.2.4 Safety
- 11.5.3 Flood protection of buildings
- 11.5.3.1 Layout
- 11.5.3.2 Fabric
- 11.6 Flood resilience
- 11.6.1 Properties
- 11.6.2 Performance
- Problems
- Key sources
- References
- 12. Combined sewers and combined sewer overflows
- 12.1 Background
- 12.2 System flows
- 12.2.1 Low flow rates
- 12.3 The role of CSOs
- 12.3.1 Flow and pollutants
- 12.3.2 First foul flush
- 12.4 Control of pollution from combined sewer systems
- 12.4.1 CSO settings and permits
- 12.4.1.1 Technical Committee Formula A
- 12.4.1.2 Scottish Development Department (SDD)
- 12.4.1.3 Urban pollution management
- 12.4.2 Monitoring
- 12.5 Approaches to CSO design
- 12.5.1 High side weir
- 12.5.1.1 Principles
- 12.5.1.2 Dimensions and layout
- 12.5.2 Screens
- 12.5.2.1 Principles
- 12.5.2.2 Development
- 12.5.2.3 Dimensions and layout
- 12.5.3 Stilling pond
- 12.5.3.1 Principles
- 12.5.3.2 Development
- 12.5.3.3 Dimensions and layout
- 12.5.4 Hydrodynamic vortex separator
- 12.5.4.1 Principles
- 12.5.4.2 Development
- 12.5.4.3 Dimensions and layout
- 12.5.5 Storage
- 12.5.5.1 Principles
- 12.5.5.2 Development
- 12.5.5.3 Dimensions and layout
- 12.6 Effectiveness of CSOs
- 12.6.1 Performance measures
- 12.6.2 Role of CFD
- 12.6.3 Gross solids
- 12.6.4 Choice of CSO design
- 12.7 CSO design details
- 12.7.1 Diameter of inflow pipe
- 12.7.2 Creating good inlet flow conditions
- 12.7.3 Weirs
- 12.7.4 Selecting, sizing, and accommodating the screen
- 12.7.5 Control of outflow
- 12.7.6 Chamber invert
- 12.7.7 Design return period
- 12.7.8 Top water level
- 12.7.9 Access
- Problems
- Key sources
- References
- 13. Storage
- 13.1 Function of storage
- 13.2 Overall design
- 13.2.1 Online
- 13.2.2 Offline
- 13.2.3 Flow control
- 13.3 Sizing
- 13.3.1 Preliminary storage sizing
- 13.3.2 Storage routing
- 13.4 Level pool (or reservoir) routing
- 13.5 Alternative routing procedure
- Problems
- References
- 14. Pumped systems
- 14.1 Why use a pumping system?
- 14.2 General arrangement of a pumping system
- 14.3 Hydraulic design
- 14.3.1 Pump characteristics
- 14.3.2 System characteristics
- 14.3.3 Power
- 14.3.4 Pumps in parallel
- 14.3.5 Suction and delivery pipes
- 14.4 Rising mains
- 14.4.1 Differences from gravity sewers
- 14.4.1.1 Hydraulic gradient
- 14.4.1.2 Flow is not continuous
- 14.4.1.3 Power input
- 14.4.1.4 The pipes are under pressure
- 14.4.2 Design features
- 14.4.3 Surge
- 14.5 Types of pump
- 14.6 Pumping station design
- 14.6.1 Main elements
- 14.6.1.1 Wet well–dry well
- 14.6.1.2 Wet well only
- 14.6.2 Number of pumps
- 14.6.3 Control
- 14.6.4 Sump volume
- 14.6.5 Flow arrangements
- 14.6.6 Maintenance
- 14.6.7 Energy demands
- 14.7 Non-gravity systems
- 14.8 Energy use
- Problems
- Key sources
- References
- 15. Structural design and construction
- 15.1 Types of construction
- 15.2 Pipes
- 15.2.1 General
- 15.2.2 Materials
- 15.2.2.1 Clay
- 15.2.2.2 Concrete
- 15.2.2.3 Ductile iron
- 15.2.2.4 Steel
- 15.2.2.5 Unplasticised PVC (PVC-U)
- 15.2.2.6 Polyethylene (PE)
- 15.2.2.7 Other materials
- 15.2.2.8 Sizes
- 15.2.3 Pipe joints
- 15.2.3.1 Spigot and socket
- 15.2.3.2 Sleeve
- 15.2.3.3 Bolted flange joints
- 15.2.3.4 Fusion jointing
- 15.3 Structural design
- 15.3.1 Introduction
- 15.3.2 Rigid pipeline design
- 15.3.2.1 Soil load, Wc
- 15.3.2.2 Concentrated surcharge load
- 15.3.2.3 Liquid load
- 15.3.2.4 Strength
- 15.4 Site investigation
- 15.5 Open-trench construction
- 15.5.1 Excavation
- 15.5.2 Pipe laying
- 15.6 TunnelLing
- 15.6.1 Lining
- 15.6.1.1 Primary lining
- 15.6.1.2 Secondary lining
- 15.6.2 Ground treatment and control of groundwater
- 15.6.2.1 Dewatering
- 15.6.2.2 Ground freezing
- 15.6.2.3 Injection of grouts or chemicals
- 15.6.2.4 Compressed air
- 15.6.3 Excavation
- 15.7 Trenchless methods
- 15.7.1 Pipejacking
- 15.7.2 Microtunnelling
- 15.7.3 Auger boring
- 15.7.3.1 Directional drilling (DD)
- 15.7.3.2 Impact moling
- 15.7.3.3 Pipe ramming
- 15.7.3.4 Timber headings
- 15.8 Costs
- 15.8.1 Construction costs
- 15.8.2 Carbon accounting
- Problems
- Key sources
- References
- British Standards
- 16. Sediments
- 16.1 Introduction
- 16.2 Origins
- 16.2.1 Definition
- 16.2.2 Sources
- 16.3 Effects
- 16.3.1 Problems
- 16.3.2 Hydraulic
- 16.3.2.1 Suspension
- 16.3.2.2 Geometry
- 16.3.2.3 Bed roughness
- 16.3.3 Pollutional
- 16.4 Transport
- 16.4.1 Entrainment
- 16.4.2 Transport
- 16.4.3 Deposition
- 16.4.4 Sediment beds and bed-load transport
- 16.5 Characteristics
- 16.5.1 Deposited sediment
- 16.5.1.1 Physical characteristics
- 16.5.1.2 Chemical characteristics
- 16.5.1.3 Significance of deposits
- 16.5.2 Mobile sediment
- 16.5.2.1 Suspension
- 16.5.2.2 Near-bed
- 16.5.2.3 Granular bed-load
- 16.5.2.4 Particle size
- 16.6 Self-cleansing design
- 16.6.1 Velocity based
- 16.6.2 Tractive force based
- 16.6.3 The CIRIA method
- 16.6.3.1 Self-cleansing
- 16.6.3.2 Movement criteria
- 16.6.3.3 Design procedure
- 16.6.3.4 Limitations
- Problems
- Key sources
- References
- 17. Operation and maintenance
- 17.1 Introduction
- 17.2 Maintenance strategies
- 17.2.1 Public health
- 17.2.2 Asset management
- 17.2.3 Maintain hydraulic capacity
- 17.2.4 Minimise pollution
- 17.2.5 Minimise disruption
- 17.2.6 Reactive maintenance
- 17.2.7 Planned maintenance
- 17.2.8 Operational functions
- 17.2.9 Role of design
- 17.2.10 Predicting failure
- 17.3 Sewer location and inspection
- 17.3.1 Applications
- 17.3.2 Frequency
- 17.3.3 Locational survey
- 17.3.4 Closed-circuit television (CCTV)
- 17.3.4.1 Propulsion
- 17.3.4.2 Camera operation
- 17.3.5 Manual inspection
- 17.3.6 Other techniques
- 17.3.6.1 Sonar
- 17.3.6.2 Infrared
- 17.3.6.3 Sewer profiling
- 17.3.6.4 Alternative approaches
- 17.3.7 Data storage and management
- 17.4 Sewer cleaning techniques
- 17.4.1 Objectives
- 17.4.2 Problems
- 17.4.2.1 Gross solids (input)
- 17.4.2.2 FOG/scale (input)
- 17.4.2.3 Sediment (input)
- 17.4.2.4 Defects (system)
- 17.4.2.5 Traps (system)
- 17.4.2.6 Intruding laterals (system)
- 17.4.2.7 Tree roots (system)
- 17.4.3 Cleaning approaches
- 17.4.3.1 Rodding or boring
- 17.4.3.2 Winching or dragging
- 17.4.3.3 Jetting
- 17.4.3.4 Flushing
- 17.4.3.5 Hand excavation
- 17.4.3.6 Invert traps
- 17.4.3.7 Gully pots
- 17.4.4 Comparison of cleaning methods
- 17.4.5 FOG control
- 17.4.5.1 At source
- 17.4.5.2 Recycling
- 17.4.5.3 Chemical treatment
- 17.4.5.4 Bio-augmentation
- 17.5 Ancillary and network equipment maintenance
- 17.6 SuDS
- 17.7 Health and safety
- 17.7.1 Atmospheric hazards
- 17.7.2 Physical injury
- 17.7.3 Infectious diseases
- 17.7.4 Safety equipment
- 17.7.5 Rodent control
- 17.8 Gas generation and control
- 17.8.1 Mechanisms
- 17.8.2 Favourable conditions
- 17.8.3 Sulphide buildup
- 17.8.4 Control
- 17.8.4.1 Sewerage detail design
- 17.8.4.2 Ventilation
- 17.8.4.3 Aeration
- 17.8.4.4 Oxidation
- 17.8.4.5 Chemical addition
- Problems
- Key sources
- References
- 18. Rehabilitation
- 18.1 Introduction
- 18.1.1 The problem
- 18.1.2 Sewerage Rehabilitation Manual
- 18.1.3 The need for rehabilitation
- 18.1.4 Repair, renovation, and replacement
- 18.2 SRM procedure
- 18.2.1 Steps in the procedure
- 18.2.2 Integrated approach
- 18.2.2.1 Hydraulic
- 18.2.2.2 Environmental
- 18.2.2.3 Structural
- 18.2.2.4 Operations and maintenance
- 18.2.2.5 Developing the plan
- 18.2.2.6 Implementation
- 18.3 Methods of structural repair and renovation
- 18.3.1 Man-entry sewers
- 18.3.1.1 Repair
- 18.3.1.2 Renovation
- 18.3.2 Non-man-entry sewers
- 18.3.2.1 Repair
- 18.3.2.2 Renovation
- 18.3.3 Choice of method
- 18.3.4 Associated work
- 18.3.4.1 Laterals
- 18.3.4.2 Cleaning
- 18.3.4.3 Overpumping
- 18.4 Hydraulic rehabilitation
- 18.4.1 Reduce hydraulic inputs to piped system
- 18.4.2 Maximize capabilities of the existing system
- 18.4.3 Adjust system to cause attenuation of peak flows
- 18.4.4 Increase capacity of the system
- 18.5 Balancing cost and risk
- Problems
- Key sources
- References
- 19. Modelling in practice
- 19.1 Models and urban drainage engineering
- 19.1.1 Development of flow models
- 19.1.2 Model types
- 19.2 Urban drainage models in context
- 19.2.1 The modeller
- 19.2.2 Confidence in the model
- 19.2.3 Model use
- 19.3 Elements of urban drainage models
- 19.3.1 Overview of the components
- 19.3.2 Rainfall
- 19.3.3 Rainfall to runoff
- 19.3.4 Overland flow direct from runoff
- 19.3.5 Dry weather flow
- 19.3.6 Infiltration
- 19.3.7 Surface flooding
- 19.4 Modelling unsteady flow
- 19.4.1 The Saint-Venant equations
- 19.4.2 Simplifications of the full equations
- 19.4.3 Numerical methods of solution
- 19.4.4 Surcharge
- 19.5 Setting up and validating a system model
- 19.5.1 Defining the model purpose and detail
- 19.5.2 Input data
- 19.5.3 Model testing
- 19.5.4 Flow surveys
- 19.5.5 Model calibration/verification against measured flow data
- 19.5.6 Evaluating confidence
- 19.5.7 Documentation
- 19.6 Modelling flooding
- 19.6.1 DTM/DEMs
- 19.6.2 Virtual flood cones
- 19.6.3 One-dimensional–two-dimensional (1D–2D) coupled models
- 19.6.4 Rapid flood spreading models
- 19.7 Water quality modelling
- 19.7.1 The processes to be modelled
- 19.7.2 Wastewater inflow
- 19.7.3 Catchment surface
- 19.7.4 Gully pots
- 19.7.5 Transport through the system
- 19.7.6 Pipe and tank deposits
- 19.8 Modelling pollutant transport
- 19.8.1 Advection/dispersion
- 19.8.2 Completely mixed “tank”
- 19.8.3 Sediment transport
- 19.8.3.1 Mechanics
- 19.8.3.2 Sediment bed
- 19.8.3.3 Solid attachment
- 19.8.4 Gross solids
- 19.9 Modelling pollutant transformation
- 19.9.1 Conservative pollutants
- 19.9.2 Simple decay expressions
- 19.9.3 Complex processes approach
- 19.9.3.1 Oxygen balance
- 19.9.3.2 Reaeration
- 19.9.3.3 Oxygen consumption in the bulk flow
- 19.9.3.4 Oxygen consumption in the biofilm
- 19.9.3.5 Oxygen consumption in the sediment
- 19.10 Using water quality models
- 19.10.1 Model applications
- 19.10.2 Types of sewer quality models
- 19.10.3 Types and complexity of river quality models
- 19.11 Planning an integrated study
- 19.11.1 Components to consider
- 19.11.1.1 Drivers
- 19.11.1.2 Catchment boundary
- 19.11.1.3 Waterbodies
- 19.11.1.4 River modelling approach
- 19.11.1.5 Point source discharges
- 19.11.1.6 Rainfall and evaporation
- 19.11.2 Input data and model calibration/verification
- 19.11.3 Data collection in sewers and receiving waters
- Problems
- Key sources
- References
- 20. Innovations in modelling
- 20.1 Introduction
- 20.2 Alternative, non-physically based, modelling approaches
- 20.2.1 Empirical models
- 20.2.2 Artificial neural networks
- 20.2.3 Conceptual or meta-models
- 20.2.4 Stochastic models
- 20.3 Integrated modelling
- 20.3.1 Why do we need integrated models?
- 20.3.2 Defining and classifying the level of integration
- 20.3.3 Methods and tools for integrated system modelling and design
- 20.3.4 Integrated control
- 20.3.4.1 Multi-objective optimisation
- 20.4 Coupling models to other models: Emerging standards
- 20.5 Calibration aspects for integrated urban drainage systems
- 20.5.1 Optimisation methods
- 20.6 Uncertainty analysis
- 20.6.1 Types of uncertainty in urban drainage modelling
- 20.6.2 Uncertainty analysis in urban drainage modelling
- Problems
- Key sources
- References
- 21. Stormwater management (SuDS)
- 21.1 Introduction
- 21.2 Devices
- 21.2.1 Inlet controls
- 21.2.1.1 Blue roofs
- 21.2.1.2 Green roofs
- 21.2.1.3 Rainwater harvesting and water butts
- 21.2.1.4 Paved area ponding
- 21.2.2 Infiltration devices
- 21.2.3 Vegetated surfaces
- 21.2.4 Pervious pavements
- 21.2.5 Filter drains
- 21.2.6 Infiltration basins
- 21.2.7 Detention basins
- 21.2.8 Ponds
- 21.2.9 Constructed wetlands
- 21.3 Elements of design
- 21.3.1 Rainfall
- 21.3.2 Runoff
- 21.3.3 Conveyance
- 21.3.4 Inlets and outlets
- 21.3.5 Storage volume related to inflow and outflow
- 21.3.6 Infiltration from a pervious pavement sub-base
- 21.3.7 Infiltration from a soakaway or infiltration trench
- 21.3.7.1 BRE Digest 365 method
- 21.3.7.2 CIRIA 156 method
- 21.3.8 Water quality
- 21.3.8.1 Mass balance
- 21.3.8.2 Treatment volume
- 21.3.9 Amenity and biodiversity
- 21.3.10 Modelling
- 21.4 SuDS applications
- 21.4.1 Management train
- 21.4.1.1 Retrofit
- 21.5 Issues
- 21.5.1 Long-term performance
- 21.5.1.1 Maintenance
- 21.5.1.2 Adoption
- 21.5.1.3 Costs
- 21.5.1.4 Planning
- 21.5.1.5 Groundwater pollution
- 21.6 Other stormwater management measures
- 21.6.1 Oil separators
- 21.6.1.1 Non-structural measures
- 21.6.1.2 Public attitudes and community engagement
- Problems
- Key sources
- References
- 22. Smart systems
- 22.1 Introduction
- 22.2 Real-time control
- 22.2.1 Definition
- 22.2.2 Equipment
- 22.2.2.1 Sensors
- 22.2.2.2 Regulators
- 22.2.2.3 Controllers
- 22.2.2.4 Data transmission systems
- 22.2.3 Control
- 22.2.3.1 Classification
- 22.2.3.2 Control loop
- 22.2.3.3 Control strategy
- 22.2.4 Applicability
- 22.2.5 Benefits and drawbacks
- 22.3 Early warning systems
- 22.3.1 Definition and elements
- 22.3.1.1 Risk knowledge
- 22.3.1.2 Monitoring and warning service
- 22.3.1.3 Dissemination
- 22.3.1.4 Emergency response capacity
- 22.3.2 Forecast services
- 22.3.2.1 Flow forecasting models
- 22.3.2.2 Meteorological predictions
- 22.3.2.3 Flood occurrence criteria
- 22.4 Citizen observatories
- Problems
- Key sources
- References
- 23. Global issues
- 23.1 Introduction
- 23.2 Health
- 23.3 Option selection
- 23.3.1 Sanitation
- 23.3.2 Storm drainage
- 23.4 On-site sanitation
- 23.4.1 Latrines
- 23.4.1.1 Pit latrine
- 23.4.1.2 VIP latrines
- 23.4.1.3 Pour-flush latrines
- 23.4.1.4 Composting latrines
- 23.4.1.5 Communal latrines
- 23.4.2 Septic tank systems
- 23.4.3 Aqua privies
- 23.4.4 Urine diverting dry toilets
- 23.4.5 New technologies
- 23.5 Off-site sanitation
- 23.5.1 Bucket latrines
- 23.5.2 Vault latrines
- 23.5.3 Conventional sewerage
- 23.5.3.1 Septicity
- 23.5.3.2 Blockage
- 23.5.4 Unconventional sewerage
- 23.5.4.1 Simplified sewerage
- 23.5.4.2 Settled sewerage
- 23.6 Storm drainage
- 23.6.1 Flooding
- 23.6.2 Open drainage
- 23.6.2.1 Open channels
- 23.6.2.2 Road-as-drain
- 23.6.3 Closed drainage
- 23.6.3.1 Conventional drainage
- 23.6.3.2 Dual drainage
- 23.6.4 Stormwater management
- 23.7 Grey water management
- 23.7.1 Options
- Problems
- Key sources
- References
- 24. Towards sustainable urban water management
- 24.1 Introduction
- 24.1.1 Sustainable development
- 24.1.2 Sustainability
- 24.1.3 Sustainable urban water management
- 24.1.4 Transition states
- 24.2 Sustainability in urban drainage
- 24.2.1 Objectives
- 24.2.2 Strategies
- 24.2.2.1 Water transport
- 24.2.2.2 Mixing of industrial and domestic wastes
- 24.2.2.3 Mixing of stormwater and wastewater
- 24.2.3 Integration
- 24.2.4 Does size matter?
- 24.3 Steps in the right direction
- 24.3.1 Domestic grey water recycling
- 24.3.2 Nutrient recycling
- 24.3.3 Heat recovery
- 24.3.4 Disposal of domestic sanitary waste
- 24.4 Assessing sustainability
- 24.5 Resilience
- 24.5.1 Definitions and objectives
- 24.5.2 Resilience and sustainability
- 24.5.3 Resilience in strategic planning
- 24.6 Urban futures
- Problems
- Key sources
- References
- Index
Reviews
There are no reviews yet.