Description
Efnisyfirlit
- Cover
- Half Title
- Title Page
- Copyright Page
- Table of Contents
- Preface
- Symbols used in this book
- SI units and abbreviations
- 1 D.C. circuits and methods of circuit analysis
- Aims and objectives
- 1.1 Introduction
- 1.2 Electric current, electromotive force, potential difference, energy and power, resistance and conductance
- 1.2.1 Summary of Section 1.2
- 1.2.2 Resistance and conductance
- 1.2.3 Internal resistance and output voltage of an e.m.f. source
- 1.3 Resistors in series and in parallel
- 1.3.1 Resistors in series
- 1.3.2 Resistors in parallel
- 1.3.3 The voltage divider
- 1.3.4 The current divider
- 1.3.5 The variable potential divider (or ‘pot’)
- 1.3.6 Summary of Section 1.3
- 1.4 The measurement of current, voltage and resistance
- 1.4.1 Using ammeters and voltmeters
- 1.4.2 The multimeter
- 1.4.3 The moving-coil multimeter
- 1.4.4 The digital multimeter
- 1.4.5 Summary of Section 1.4
- 1.5 Kirchhoff’s laws
- 1.5.1 Introduction
- 1.5.2 Kirchhoff’s current law
- 1.5.3 Kirchhoff’s voltage law
- 1.6 Thevenin and Norton equivalent circuits
- 1.6.1 Voltage and current sources
- 1.6.2 Thévenin’s theorem
- 1.6.3 Norton’s theorem
- 1.6.4 Calculating the effects of voltmeters and ammeters
- 1.6.5 Circuits with multiple sources—the superposition principle
- 1.6.6 Summary of Section 1.6
- 1.7 Nodal analysis
- 1.7.1 Introduction
- 1.7.2 An outline of the method
- 1.7.3 Choosing a reference node
- 1.7.4 Obtaining the node voltage equations
- 1.7.5 Completing the analysis
- 1.7.6 A circuit with multiple e.m.f. sources
- 1.7.7 Summary of Section 1.7
- 1.8 Analysing circuits using a computer-aided design (CAD) package
- Answers to self-assessment questions
- 2 Signals, waveforms and a.c. components
- Aims and objectives
- 2.1 Electrical waveforms
- 2.2 Sinusoidal waveforms and frequency
- 2.3 Voltage, r.m.s. and power
- 2.3.1 Periodic waveforms
- 2.3.2 Non-periodic waveforms: signals and noise
- 2.3.3 Symbols for voltages and currents
- 2.4 Frequency spectra
- 2.4.1 Periodic waveforms
- 2.4.2 Spectra of signals and noise
- 2.5 A.C. components
- 2.5.1 Capacitors
- 2.5.2 Inductors
- 2.5.3 Transformers
- 2.6 Conclusion and summary
- Answers to self-assessment questions
- 3 Phasor analysis of a.c. circuits
- Aims and objectives
- 3.1 Phasors
- 3.1.1 Phasor diagrams
- 3.1.2 Phasor notation
- 3.1.3 Phasor addition
- 3.1.4 Phasor analysis of the low-pass CR circuit
- 3.2 Phasor multiplication and division
- 3.2.1 Multiplication: voltage gain
- 3.2.2 Division: impedance
- 3.3 Phasor manipulations using the operator j
- 3.3.1 The operator j
- 3.3.2 Using the operator j
- 3.3.3 Complex number terminology
- 3.3.4 Addition and subtraction of phasors in component form
- 3.3.5 Multiplication and division of complex numbers
- 3.4 Equivalent impedance and admittance
- 3.4.1 Impedance
- 3.4.2 Admittance
- 3.5 Circuit analysis using the operator j
- 3.5.1 A.C. analysis of the low-pass CR circuit
- 3.6 The decibel
- 3.7 Bode plots
- 3.7.1 Bode plots for simple low-pass networks
- 3.7.2 Simple high-pass networks
- 3.7.3 Networks with two break points
- 3.8 The frequency response of RLC circuits
- 3.8.1 The series RLC circuit
- 3.8.2 The series RLC bandpass circuit
- 3.8.3 Bandwidth of the series bandpass circuit
- 3.8.4 Bode plots for the bandpass RLC circuit
- 3.8.5 Parallel resonance
- 3.9 The principle of duality
- 3.10 Summary
- Answers to self-assessment questions
- 4 Amplifiers and feedback
- Aims and objectives
- 4.1 What are amplifiers?
- 4.1.1 Equivalent circuits
- 4.1.2 Inverting and non-inverting amplifiers
- 4.2 The operational amplifier
- 4.3 Feedback and operational amplifiers
- 4.3.1 A basic non-inverting feedback amplifier (series feedback connection)
- 4.3.2 Stability in feedback amplifiers
- 4.3.3 Frequency response and gain-bandwidth product
- 4.3.4 Input and output impedance
- 4.3.5 Frequency limitations of negative feedback
- 4.3.6 The inverting feedback amplifier (parallel or shunt feedback)
- 4.3.7 Current-derived feedback
- 4.4 Summary of feedback principles
- 4.5 Further examples of feedback circuits
- 4.5.1 Summing amplifiers
- 4.5.2 Cr-active filters
- 4.6 Output offset and equivalent input offset sources
- 4.6.1 Bias current and input offset voltage and current
- 4.6.2 Calculating the output offset voltage
- 4.7 Noise and equivalent noise sources
- 4.7.1 Sources of internal noise
- 4.7.2 Amplifier equivalent noise generators
- 4.7.3 Calculating amplifier output noise
- 4.8 Voltage, current and speed limitations
- 4.8.1 Voltage swing
- 4.8.2 Current limit: short-circuit protection
- 4.8.3 Slew rate
- 4.8.4 Full-power bandwidth
- 4.9 A summary of some op amp feedback circuits
- Answers to self-assessment questions
- 5 Combinational logic circuits
- Aims and objectives
- 5.1 A simple interlock example
- 5.1.1 Truth table
- 5.1.2 Implementation
- 5.1.3 Summary of Section 5.1
- 5.2 Binary inputs and outputs
- 5.2.1 Coding
- 5.2.2 Number representation
- 5.2.3 Other symbols and distinct items
- 5.2.4 Summary of Section 5.2
- 5.3 Truth tables and Boolean notation
- 5.3.1 Problems with only one input
- 5.3.2 Problems with two inputs
- 5.3.3 Problems with more than two inputs
- 5.3.4 Implementation using gates
- 5.3.5 Summary of Section 5.3
- 5.4 Basic rules of Boolean algebra
- 5.4.1 Simplifying Boolean expressions
- 5.4.2 Summary of Section 5.4
- 5.5 Karnaugh maps
- 5.5.1 Obtaining product terms
- 5.5.2 Designing a seven-segment decoder using Karnaugh maps
- 5.5.3 The inverted Karnaugh map
- 5.5.4 NAND gate representation
- 5.5.5 Summary of Section 5.5
- 5.6 Electronic combinational logic
- 5.6.1 Some SSI devices
- 5.6.2 MSI devices
- 5.6.3 Programmable logic devices
- 5.6.4 Custom and semi-custom integrated circuits
- 5.7 Electrical characteristics of logic families
- 5.7.1 LS TTL
- 5.7.2 Other TTL families
- 5.7.3 Emitter-coupled logic
- 5.7.4 CMOS
- 5.7.5 Summary of Sections 5.6 and 5.7
- Answers to self-assessment questions
- 6 Sequential logic circuits
- Aims and objectives
- 6.1 Introduction
- 6.2 Latches
- 6.2.1 The clocked SR latch
- 6.2.2 The clocked D latch
- 6.2.3 Summary of Section 6.2
- 6.3 Flip-flops
- 6.3.1 The master-slave flip-flop
- 6.3.2 The edge-triggered flip-flop
- 6.3.3 The JK flip-flop
- 6.3.4 Practical flip-flops
- 6.3.5 Summary of Section 6.3
- 6.4 Registers
- 6.4.1 Timing characteristics of a transparent register
- 6.4.2 A commercial 8-bit register
- 6.4.3 Timing characteristics for edge-triggered registers
- 6.5 Shift registers
- 6.6 Counters
- 6.6.1 Synchronous counters
- 6.6.2 An integrated circuit counter
- 6.6.3 Cascading counters
- 6.6.4 Modulo-n counters
- 6.6.5 Frequency division
- 6.6.6 Summary of Sections 6.4 to 6.6
- 6.7 The state-transition diagram
- 6.8 A general sequential machine
- 6.8.1 The state table
- 6.8.2 The state-assignment table
- 6.8.3 Sequential PLDs
- 6.8.4 Summary of Sections 6.7 and 6.8
- Answers to self-assessment questions
- 7 Analogue-digital conversion
- Aims and objectives
- 7.1 Introduction
- 7.2 Digital-to-analogue conversion
- 7.2.1 Introduction
- 7.2.2 The binary-weighted resistor network
- 7.2.3 Buffering the resistor network
- 7.2.4 D-A converter with a stabilized voltage source
- 7.2.5 The R-2R ladder resistor network
- 7.2.6 Bipolar conversion
- 7.2.7 Quantization
- 7.2.8 Summary of Section 7.2
- 7.3 Analogue-to-digital conversion
- 7.3.1 The comparator and flash converter
- 7.3.2 The counter-ramp converter
- 7.3.3 The successive approximation A-D converter
- 7.3.4 Integrating converters
- 7.3.5 Quantization
- 7.3.6 Multiplexers
- 7.3.7 Summary of Section 7.3
- 7.4 The conversion of a.c. signals
- 7.4.1 Sample-and-hold devices
- 7.4.2 Specifying the sample-and-hold
- 7.4.3 Summary of Section 7.4
- Answers to self-assessment questions
- 8 Diodes and power supplies
- Aims and objectives
- 8.1 Introduction
- 8.2 Diodes
- 8.2.1 Electrons and holes
- 8.2.2 The structure of pn junctions
- 8.2.3 The properties of pn junction diodes
- 8.3 Power supplies
- 8.3.1 The transformer
- 8.3.2 Half-wave rectification
- 8.3.3 Full-wave rectification
- 8.3.4 Filtering circuits
- 8.4 Voltage regulation
- 8.4.1 Linear voltage regulators
- 8.4.2 Switched-mode power supplies
- 8.5 Summary
- Answers to self-assessment questions
- 9 Basic transistor circuits
- Aims and objectives
- 9.1 Introduction
- 9.2 Bipolar transistors
- 9.2.1 Operation of bipolar transistors
- 9.2.2 A simple amplifier and the hybrid-Π equivalent circuit
- 9.2.3 A practical, discrete common-emitter amplifier
- 9.2.4 The long-tailed pair (differential pair)
- 9.2.5 The emitter-follower
- 9.3 Field-effect transistors (FETS)
- 9.3.1 The operation of JFETs
- 9.3.2 The operation of MOSFETs
- 9.3.3 MOSFETs compared with bipolars
- 9.3.4 FET circuits
- 9.4 Bipolar and FET push-pull output stages
- 9.4.1 A double emitter-follower
- 9.4.2 A double source follower
- 9.5 Basic switching and digital circuits
- 9.5.1 The transistor as a switch
- 9.5.2 Switching circuits using bipolar transistors
- 9.5.3 Switching circuits using FETs
- 9.6 Summary
- Answers to self-assessment questions
- Index
Reviews
There are no reviews yet.