Description
Efnisyfirlit
- Contents
- Preface
- 1. Introduction
- 1.1 THE ATMOSPHERIC CONTINUUM
- 1.2 PHYSICAL DIMENSIONS AND UNITS
- 1.3 SCALE ANALYSIS
- 1.4 FUNDAMENTAL FORCES
- 1.4.1 Pressure Gradient Force
- 1.4.2 Gravitational Force
- 1.4.3 Viscous Force
- 1.5 NONINERTIALREFERENCEFRAMESANDAPPARENTŽ FORCES
- 1.5.1 Centripetal Acceleration and Centrifugal Force
- 1.5.2 Gravity Force
- 1.5.3 The Coriolis Force and the Curvature Effect
- 1.5.4 Constant Angular Momentum Oscillations
- 1.6 STRUCTURE OF THE STATIC ATMOSPHERE
- 1.6.1 The Hydrostatic Equation
- 1.6.2 Pressure as a Vertical Coordinate
- 1.6.3 A Generalized Vertical Coordinate
- PROBLEMS 1
- MATLAB EXERCISES 1
- Suggested References 1
- 2. Basic Conservation Laws
- 2.1 TOTAL DIFFERENTIATION
- 2.1.1 Total Differentiation of a Vector in a Rotating System
- 2.2 THE VECTORIAL FORM OF THE MOMENTUM EQUATION IN ROTATING COORDINATES
- 2.3 COMPONENT EQUATIONS IN SPHERICAL COORDINATES
- 2.4 SCALE ANALYSIS OF THE EQUATIONS OF MOTION
- 2.4.1 Geostrophic Approximation and GeostrophicWind
- 2.4.2 Approximate Prognostic Equations; the Rossby Number
- 2.4.3 The Hydrostatic Approximation
- 2.5 THE CONTINUITY EQUATION
- 2.5.1 An Eulerian Derivation
- 2.5.2 A Lagrangian Derivation
- 2.5.3 Scale Analysis of the Continuity Equation
- 2.6 THE THERMODYNAMIC ENERGY EQUATION
- 2.7 THERMODYNAMICS OF THE DRY ATMOSPHERE
- 2.7.1 Potential Temperature
- 2.7.2 The Adiabatic Lapse Rate
- 2.7.3 Static Stability
- 2.7.4 Scale Analysis of the Thermodynamic Energy Equation
- PROBLEMS 2
- MATLAB EXERCISES 2
- Suggested References 2
- 3. Elementary Applications of the Basic Equations
- 3.1 BASIC EQUATIONS IN ISOBARIC COORDINATES
- 3.1.1 The Horizontal Momentum Equation
- 3.1.2 The Continuity Equation
- 3.1.3 The Thermodynamic Energy Equation
- 3.2 BALANCED FLOW
- 3.2.1 Natural Coordinates
- 3.2.2 Geostrophic Flow
- 3.2.3 Inertial Flow
- 3.2.4 Cyclostrophic Flow
- 3.2.5 The GradientWind Approximation
- 3.3 TRAJECTORIES AND STREAMLINES
- 3.4 THE THERMAL WIND
- 3.4.1 Barotropic and Baroclinic Atmospheres
- 3.5 VERTICAL MOTION
- 3.5.1 The Kinematic Method
- 3.5.2 The Adiabatic Method
- 3.6 SURFACE PRESSURE TENDENCY
- PROBLEMS 3
- MATLAB EXERCISES 3
- 4. Circulation and Vorticity
- 4.1 THE CIRCULATION THEOREM
- 4.2 VORTICITY
- 4.2.1 Vorticity in Natural Coordinates
- 4.3 POTENTIAL VORTICITY
- 4.4 THE VORTICITY EQUATION
- 4.4.1 Cartesian Coordinate Form
- 4.4.2 The Vorticity Equation in Isobaric Coordinates
- 4.4.3 Scale Analysis of the Vorticity Equation
- 4.5 VORTICITY IN BAROTROPIC FLUIDS
- 4.5.1 The Barotropic (Rossby) Potential Vorticity Equation
- 4.5.2 The Barotropic Vorticity Equation
- 4.6 THEBAROCLINIC (ERTEL) POTENTIALVORTICITYEQUATION
- 4.6.1 Equations of Motion in Isentropic Coordinates
- 4.6.2 The Potential Vorticity Equation
- 4.6.3 Integral Constraints on Isentropic Vorticity
- PROBLEMS 4
- MATLAB EXERCISES 4
- Suggested References 4
- 5. The Planetary Boundary Layer
- 5.1 ATMOSPHERIC TURBULENCE
- 5.1.1 The Boussinesq Approximation
- 5.1.2 Reynolds Averaging
- 5.2 TURBULENT KINETIC ENERGY
- 5.3 PLANETARY BOUNDARY LAYER MOMENTUM EQUATIONS
- 5.3.1 Well-Mixed Boundary Layer
- 5.3.2 The Flux–Gradient Theory
- 5.3.3 The Mixing Length Hypothesis
- 5.3.4 The Ekman Layer
- 5.3.5 The Surface Layer
- 5.3.6 The Modified Ekman Layer
- 5.4 SECONDARY CIRCULATIONS AND SPIN DOWN
- PROBLEMS 5
- MATLAB EXERCISES 5
- Suggested References 5
- 6. Synoptic-Scale Motions I: Quasi-Geostrophic Analysis
- 6.1 THE OBSERVED STRUCTURE OF EXTRATROPICAL CIRCULATIONS
- 6.2 THE QUASI-GEOSTROPHIC APPROXIMATION
- 6.2.1 Scale Analysis in Isobaric Coordinates
- 6.2.2 The Quasi-Geostrophic Vorticity Equation
- 6.3 QUASI-GEOSTROPHIC PREDICTION
- 6.3.1 Geopotential Tendency
- 6.3.2 The Quasi-Geostrophic Potential Vorticity Equation
- 6.3.3 Potential Vorticity Inversion
- 6.3.4 Vertical Coupling Through Potential Vorticity
- 6.4 DIAGNOSIS OF THE VERTICAL MOTION
- 6.4.1 The Traditional Omega Equation
- 6.4.2 The Q Vector
- 6.4.3 The Ageostrophic Circulation
- 6.5 IDEALIZED MODEL OF A BAROCLINIC DISTURBANCE
- PROBLEMS 6
- MATLAB EXERCISES 6
- Suggested References 6
- 7. Atmospheric Oscillations: Linear Perturbation Theory
- 7.1 THE PERTURBATION METHOD
- 7.2 PROPERTIES OFWAVES
- 7.2.1 Fourier Series
- 7.2.2 Dispersion and Group Velocity
- 7.3 SIMPLEWAVE TYPES
- 7.3.1 Acoustic or SoundWaves
- 7.3.2 ShallowWater GravityWaves
- 7.4 INTERNAL GRAVITY (BUOYANCY) WAVES
- 7.4.1 Pure Internal GravityWaves
- 7.4.2 TopographicWaves
- 7.5 GRAVITYWAVES MODIFIED BY ROTATION
- 7.5.1 Pure Inertial Oscillations
- 7.5.2 Inertia–GravityWaves
- 7.6 ADJUSTMENT TO GEOSTROPHIC BALANCE
- 7.7 ROSSBYWAVES
- 7.7.1 Free Barotropic RossbyWaves
- 7.7.2 Forced Topographic RossbyWaves
- PROBLEMS 7
- MATLAB EXERCISES 7
- Suggested References 7
- 8. Synoptic-Scale Motions II: Baroclinic Instability
- 8.1 HYDRODYNAMIC INSTABILITY
- 8.2 NORMAL MODE BAROCLINIC INSTABILITY: A TWO-LAYER MODEL
- 8.2.1 Linear Perturbation Analysis
- 8.2.2 Vertical Motion in BaroclinicWaves
- 8.3 THE ENERGETICS OF BAROCLINICWAVES
- 8.3.1 Available Potential Energy
- 8.3.2 Energy Equations for the Two-Layer Model
- 8.4 BAROCLINIC INSTABILITY OFA CONTINUOUSLY STRATIFIED ATMOSPHERE
- 8.4.1 Log-Pressure Coordinates
- 8.4.2 Baroclinic Instability: The Rayleigh Theorem
- 8.4.3 The Eady Stability Problem
- 8.5 GROWTHAND PROPAGATION OF NEUTRAL MODES
- 8.5.1 Transient Growth of NeutralWaves
- 8.5.2 Downstream Development
- PROBLEMS 8
- MATLAB EXERCISES 8
- Suggested References 8
- 9. Mesoscale Circulations
- 9.1 ENERGY SOURCES FOR MESOSCALE CIRCULATIONS
- 9.2 FRONTS AND FRONTOGENESIS
- 9.2.1 The Kinematics of Frontogenesis
- 9.2.2 Semigeostrophic Theory
- 9.2.3 Cross-Frontal Circulation
- 9.3 SYMMETRIC BAROCLINIC INSTABILITY
- 9.4 MOUNTAINWAVES
- 9.4.1 Flow over Isolated Ridges
- 9.4.2 LeeWaves
- 9.4.3 DownslopeWindstorms
- 9.5 CUMULUS CONVECTION
- 9.5.1 Equivalent Potential Temperature
- 9.5.2 The Pseudoadiabatic Lapse Rate
- 9.5.3 Conditional Instability
- 9.5.4 Convective Available Potential Energy (CAPE)
- 9.5.5 Entrainment
- 9.6 CONVECTIVE STORMS
- 9.6.1 Development of Rotation in Supercell Thunderstorms
- 9.6.2 The Right-Moving Storm
- 9.7 HURRICANES
- 9.7.1 Dynamics of Mature Hurricanes
- 9.7.2 Hurricane Development
- PROBLEMS 9
- MATLAB EXERCISES 9
- Suggested References 9
- 10. The General Circulation
- 10.1 THE NATURE OF THE PROBLEM
- 10.2 THE ZONALLY AVERAGED CIRCULATION
- 10.2.1 The Conventional Eulerian Mean
- 10.2.2 The Transformed Eulerian Mean (TEM)
- 10.2.3 The Zonal-Mean Potential Vorticity Equation
- 10.3 THE ANGULAR MOMENTUM BUDGET
- 10.3.1 Sigma Coordinates
- 10.3.2 The Zonal-Mean Angular Momentum
- 10.4 THE LORENZ ENERGY CYCLE
- 10.5 LONGITUDINALLY DEPENDENT TIME-AVERAGED FLOW
- 10.5.1 Stationary RossbyWaves
- 10.5.2 Jetstream and Storm Tracks
- 10.6 LOW-FREQUENCY VARIABILITY
- 10.6.1 Climate Regimes
- 10.6.2 Annular Modes
- 10.6.3 Sea Surface Temperature Anomalies
- 10.7 LABORATORYSIMULATIONOFTHEGENERALCIRCULATION
- 10.8 NUMERICAL SIMULATION OF THE GENERAL CIRCULATION
- 10.8.1 The Development of AGCMs
- 10.8.2 Dynamical Formulation
- 10.8.3 Physical Processes and Parameterizations
- 10.8.4 The NCAR Climate System Model
- PROBLEMS 10
- MATLAB EXERCISES 10
- Suggested References 10
- 11. Tropical Dynamics
- 11.1 THE OBSERVED STRUCTURE OF LARGE-SCALE TROPICAL CIRCULATIONS
- 11.1.1 The Intertropical Convergence Zone
- 11.1.2 EquatorialWave Disturbances
- 11.1.3 AfricanWave Disturbances
- 11.1.4 Tropical Monsoons
- 11.1.5 TheWalker Circulation
- 11.1.6 El Ni ˜ no and the Southern Oscillation
- 11.1.7 Equatorial Intraseasonal Oscillation
- 11.2 SCALE ANALYSIS OF LARGE-SCALE TROPICAL MOTIONS
- 11.3 CONDENSATION HEATING
- 11.4 EQUATORIALWAVE THEORY
- 11.4.1 Equatorial Rossby and Rossby–Gravity Modes
- 11.4.2 Equatorial KelvinWaves
- 11.5 STEADY FORCED EQUATORIAL MOTIONS
- PROBLEMS 11
- MATLAB EXERCISES 11
- Suggested References 11
- 12. Middle Atmosphere Dynamics
- 12.1 STRUCTURE AND CIRCULATION OF THE MIDDLE ATMOSPHERE
- 12.2 THE ZONAL-MEAN CIRCULATION OF THE MIDDLE ATMOSPHERE
- 12.2.1 Lagrangian Motion of Air Parcels
- 12.2.2 The Transformed Eulerian Mean
- 12.2.3 Zonal-Mean Transport
- 12.3 VERTICALLY PROPAGATING PLANETARYWAVES
- 12.3.1 Linear RossbyWaves
- 12.3.2 RossbyWavebreaking
- 12.4 SUDDEN STRATOSPHERICWARMINGS
- 12.5 WAVES IN THE EQUATORIAL STRATOSPHERE
- 12.5.1 Vertically Propagating KelvinWaves
- 12.5.2 Vertically Propagating Rossby–GravityWaves
- 12.5.3 Observed EquatorialWaves
- 12.6 THE QUASI-BIENNIAL OSCILLATION
- 12.7 TRACE CONSTITUENT TRANSPORT
- 12.7.1 Dynamical Tracers
- 12.7.2 Chemical Tracers
- 12.7.3 Transport in the Stratosphere
- PROBLEMS 12
- MATLAB EXERCISES 12
- Suggested References 12
- 13. Numerical Modeling and Prediction
- 13.1 HISTORICAL BACKGROUND
- 13.2 FILTERING METEOROLOGICAL NOISE
- 13.3 NUMERICAL APPROXIMATION OF THE EQUATIONS OF MOTION
- 13.3.1 Finite Differences
- 13.3.2 Centered Differences: Explicit Time Differencing
- 13.3.3 Computational Stability
- 13.3.4 Implicit Time Differencing
- 13.3.5 The Semi-Lagrangian Integration Method
- 13.3.6 Truncation Error
- 13.4 THE BAROTROPIC VORTICITY EQUATION IN FINITE DIFFERENCES
- 13.5 THE SPECTRAL METHOD
- 13.5.1 The Barotropic Vorticity Equation in Spherical Coordinates
- 13.5.2 Rossby–HaurwitzWaves
- 13.5.3 The Spectral Transform Method
- 13.6 PRIMITIVE EQUATION MODELS
- 13.6.1 The Ecmwf Grid Point Model
- 13.6.2 Spectral Models
- 13.6.3 Physical Parameterizations
- 13.7 DATA ASSIMILATION
- 13.7.1 The Initialization Problem
- 13.7.2 Nonlinear Normal Mode Initialization
- 13.7.3 Four-Dimensional Data Assimilation
- 13.8 PREDICTABILITY AND ENSEMBLE PREDICTION SYSTEMS
- PROBLEMS 13
- MATLAB EXERCISES 13
- Suggested References 13
- Appendix A: Useful Constants and Parameters
- Appendix B: List of Symbols
- Appendix C: Vector Analysis
- C.1 VECTOR IDENTITIES
- C.2 INTEGRAL THEOREMS
- C.3 VECTOR OPERATIONS IN VARIOUS COORDINATE SYSTEMS
- Appendix D: Moisture Variables
- D.1 EQUIVALENT POTENTIAL TEMPERATURE
- D.2 PSEUDOADIABATIC LAPSE RATE
- Appendix E: Standard Atmosphere Data
- Appendix F: Symmetric Baroclinic Oscillations
- Bibliography
- Index
Reviews
There are no reviews yet.