An Introduction to Dynamic Meteorology

Höfundur James R. Holton

Útgefandi Elsevier S & T

Snið Page Fidelity

Print ISBN 9780123540157

Útgáfa 4

Útgáfuár 2004

10.590 kr.

Description

Efnisyfirlit

  • Contents
  • Preface
  • 1. Introduction
  • 1.1 THE ATMOSPHERIC CONTINUUM
  • 1.2 PHYSICAL DIMENSIONS AND UNITS
  • 1.3 SCALE ANALYSIS
  • 1.4 FUNDAMENTAL FORCES
  • 1.4.1 Pressure Gradient Force
  • 1.4.2 Gravitational Force
  • 1.4.3 Viscous Force
  • 1.5 NONINERTIALREFERENCEFRAMESANDAPPARENTŽ FORCES
  • 1.5.1 Centripetal Acceleration and Centrifugal Force
  • 1.5.2 Gravity Force
  • 1.5.3 The Coriolis Force and the Curvature Effect
  • 1.5.4 Constant Angular Momentum Oscillations
  • 1.6 STRUCTURE OF THE STATIC ATMOSPHERE
  • 1.6.1 The Hydrostatic Equation
  • 1.6.2 Pressure as a Vertical Coordinate
  • 1.6.3 A Generalized Vertical Coordinate
  • PROBLEMS 1
  • MATLAB EXERCISES 1
  • Suggested References 1
  • 2. Basic Conservation Laws
  • 2.1 TOTAL DIFFERENTIATION
  • 2.1.1 Total Differentiation of a Vector in a Rotating System
  • 2.2 THE VECTORIAL FORM OF THE MOMENTUM EQUATION IN ROTATING COORDINATES
  • 2.3 COMPONENT EQUATIONS IN SPHERICAL COORDINATES
  • 2.4 SCALE ANALYSIS OF THE EQUATIONS OF MOTION
  • 2.4.1 Geostrophic Approximation and GeostrophicWind
  • 2.4.2 Approximate Prognostic Equations; the Rossby Number
  • 2.4.3 The Hydrostatic Approximation
  • 2.5 THE CONTINUITY EQUATION
  • 2.5.1 An Eulerian Derivation
  • 2.5.2 A Lagrangian Derivation
  • 2.5.3 Scale Analysis of the Continuity Equation
  • 2.6 THE THERMODYNAMIC ENERGY EQUATION
  • 2.7 THERMODYNAMICS OF THE DRY ATMOSPHERE
  • 2.7.1 Potential Temperature
  • 2.7.2 The Adiabatic Lapse Rate
  • 2.7.3 Static Stability
  • 2.7.4 Scale Analysis of the Thermodynamic Energy Equation
  • PROBLEMS 2
  • MATLAB EXERCISES 2
  • Suggested References 2
  • 3. Elementary Applications of the Basic Equations
  • 3.1 BASIC EQUATIONS IN ISOBARIC COORDINATES
  • 3.1.1 The Horizontal Momentum Equation
  • 3.1.2 The Continuity Equation
  • 3.1.3 The Thermodynamic Energy Equation
  • 3.2 BALANCED FLOW
  • 3.2.1 Natural Coordinates
  • 3.2.2 Geostrophic Flow
  • 3.2.3 Inertial Flow
  • 3.2.4 Cyclostrophic Flow
  • 3.2.5 The GradientWind Approximation
  • 3.3 TRAJECTORIES AND STREAMLINES
  • 3.4 THE THERMAL WIND
  • 3.4.1 Barotropic and Baroclinic Atmospheres
  • 3.5 VERTICAL MOTION
  • 3.5.1 The Kinematic Method
  • 3.5.2 The Adiabatic Method
  • 3.6 SURFACE PRESSURE TENDENCY
  • PROBLEMS 3
  • MATLAB EXERCISES 3
  • 4. Circulation and Vorticity
  • 4.1 THE CIRCULATION THEOREM
  • 4.2 VORTICITY
  • 4.2.1 Vorticity in Natural Coordinates
  • 4.3 POTENTIAL VORTICITY
  • 4.4 THE VORTICITY EQUATION
  • 4.4.1 Cartesian Coordinate Form
  • 4.4.2 The Vorticity Equation in Isobaric Coordinates
  • 4.4.3 Scale Analysis of the Vorticity Equation
  • 4.5 VORTICITY IN BAROTROPIC FLUIDS
  • 4.5.1 The Barotropic (Rossby) Potential Vorticity Equation
  • 4.5.2 The Barotropic Vorticity Equation
  • 4.6 THEBAROCLINIC (ERTEL) POTENTIALVORTICITYEQUATION
  • 4.6.1 Equations of Motion in Isentropic Coordinates
  • 4.6.2 The Potential Vorticity Equation
  • 4.6.3 Integral Constraints on Isentropic Vorticity
  • PROBLEMS 4
  • MATLAB EXERCISES 4
  • Suggested References 4
  • 5. The Planetary Boundary Layer
  • 5.1 ATMOSPHERIC TURBULENCE
  • 5.1.1 The Boussinesq Approximation
  • 5.1.2 Reynolds Averaging
  • 5.2 TURBULENT KINETIC ENERGY
  • 5.3 PLANETARY BOUNDARY LAYER MOMENTUM EQUATIONS
  • 5.3.1 Well-Mixed Boundary Layer
  • 5.3.2 The Flux–Gradient Theory
  • 5.3.3 The Mixing Length Hypothesis
  • 5.3.4 The Ekman Layer
  • 5.3.5 The Surface Layer
  • 5.3.6 The Modified Ekman Layer
  • 5.4 SECONDARY CIRCULATIONS AND SPIN DOWN
  • PROBLEMS 5
  • MATLAB EXERCISES 5
  • Suggested References 5
  • 6. Synoptic-Scale Motions I: Quasi-Geostrophic Analysis
  • 6.1 THE OBSERVED STRUCTURE OF EXTRATROPICAL CIRCULATIONS
  • 6.2 THE QUASI-GEOSTROPHIC APPROXIMATION
  • 6.2.1 Scale Analysis in Isobaric Coordinates
  • 6.2.2 The Quasi-Geostrophic Vorticity Equation
  • 6.3 QUASI-GEOSTROPHIC PREDICTION
  • 6.3.1 Geopotential Tendency
  • 6.3.2 The Quasi-Geostrophic Potential Vorticity Equation
  • 6.3.3 Potential Vorticity Inversion
  • 6.3.4 Vertical Coupling Through Potential Vorticity
  • 6.4 DIAGNOSIS OF THE VERTICAL MOTION
  • 6.4.1 The Traditional Omega Equation
  • 6.4.2 The Q Vector
  • 6.4.3 The Ageostrophic Circulation
  • 6.5 IDEALIZED MODEL OF A BAROCLINIC DISTURBANCE
  • PROBLEMS 6
  • MATLAB EXERCISES 6
  • Suggested References 6
  • 7. Atmospheric Oscillations: Linear Perturbation Theory
  • 7.1 THE PERTURBATION METHOD
  • 7.2 PROPERTIES OFWAVES
  • 7.2.1 Fourier Series
  • 7.2.2 Dispersion and Group Velocity
  • 7.3 SIMPLEWAVE TYPES
  • 7.3.1 Acoustic or SoundWaves
  • 7.3.2 ShallowWater GravityWaves
  • 7.4 INTERNAL GRAVITY (BUOYANCY) WAVES
  • 7.4.1 Pure Internal GravityWaves
  • 7.4.2 TopographicWaves
  • 7.5 GRAVITYWAVES MODIFIED BY ROTATION
  • 7.5.1 Pure Inertial Oscillations
  • 7.5.2 Inertia–GravityWaves
  • 7.6 ADJUSTMENT TO GEOSTROPHIC BALANCE
  • 7.7 ROSSBYWAVES
  • 7.7.1 Free Barotropic RossbyWaves
  • 7.7.2 Forced Topographic RossbyWaves
  • PROBLEMS 7
  • MATLAB EXERCISES 7
  • Suggested References 7
  • 8. Synoptic-Scale Motions II: Baroclinic Instability
  • 8.1 HYDRODYNAMIC INSTABILITY
  • 8.2 NORMAL MODE BAROCLINIC INSTABILITY: A TWO-LAYER MODEL
  • 8.2.1 Linear Perturbation Analysis
  • 8.2.2 Vertical Motion in BaroclinicWaves
  • 8.3 THE ENERGETICS OF BAROCLINICWAVES
  • 8.3.1 Available Potential Energy
  • 8.3.2 Energy Equations for the Two-Layer Model
  • 8.4 BAROCLINIC INSTABILITY OFA CONTINUOUSLY STRATIFIED ATMOSPHERE
  • 8.4.1 Log-Pressure Coordinates
  • 8.4.2 Baroclinic Instability: The Rayleigh Theorem
  • 8.4.3 The Eady Stability Problem
  • 8.5 GROWTHAND PROPAGATION OF NEUTRAL MODES
  • 8.5.1 Transient Growth of NeutralWaves
  • 8.5.2 Downstream Development
  • PROBLEMS 8
  • MATLAB EXERCISES 8
  • Suggested References 8
  • 9. Mesoscale Circulations
  • 9.1 ENERGY SOURCES FOR MESOSCALE CIRCULATIONS
  • 9.2 FRONTS AND FRONTOGENESIS
  • 9.2.1 The Kinematics of Frontogenesis
  • 9.2.2 Semigeostrophic Theory
  • 9.2.3 Cross-Frontal Circulation
  • 9.3 SYMMETRIC BAROCLINIC INSTABILITY
  • 9.4 MOUNTAINWAVES
  • 9.4.1 Flow over Isolated Ridges
  • 9.4.2 LeeWaves
  • 9.4.3 DownslopeWindstorms
  • 9.5 CUMULUS CONVECTION
  • 9.5.1 Equivalent Potential Temperature
  • 9.5.2 The Pseudoadiabatic Lapse Rate
  • 9.5.3 Conditional Instability
  • 9.5.4 Convective Available Potential Energy (CAPE)
  • 9.5.5 Entrainment
  • 9.6 CONVECTIVE STORMS
  • 9.6.1 Development of Rotation in Supercell Thunderstorms
  • 9.6.2 The Right-Moving Storm
  • 9.7 HURRICANES
  • 9.7.1 Dynamics of Mature Hurricanes
  • 9.7.2 Hurricane Development
  • PROBLEMS 9
  • MATLAB EXERCISES 9
  • Suggested References 9
  • 10. The General Circulation
  • 10.1 THE NATURE OF THE PROBLEM
  • 10.2 THE ZONALLY AVERAGED CIRCULATION
  • 10.2.1 The Conventional Eulerian Mean
  • 10.2.2 The Transformed Eulerian Mean (TEM)
  • 10.2.3 The Zonal-Mean Potential Vorticity Equation
  • 10.3 THE ANGULAR MOMENTUM BUDGET
  • 10.3.1 Sigma Coordinates
  • 10.3.2 The Zonal-Mean Angular Momentum
  • 10.4 THE LORENZ ENERGY CYCLE
  • 10.5 LONGITUDINALLY DEPENDENT TIME-AVERAGED FLOW
  • 10.5.1 Stationary RossbyWaves
  • 10.5.2 Jetstream and Storm Tracks
  • 10.6 LOW-FREQUENCY VARIABILITY
  • 10.6.1 Climate Regimes
  • 10.6.2 Annular Modes
  • 10.6.3 Sea Surface Temperature Anomalies
  • 10.7 LABORATORYSIMULATIONOFTHEGENERALCIRCULATION
  • 10.8 NUMERICAL SIMULATION OF THE GENERAL CIRCULATION
  • 10.8.1 The Development of AGCMs
  • 10.8.2 Dynamical Formulation
  • 10.8.3 Physical Processes and Parameterizations
  • 10.8.4 The NCAR Climate System Model
  • PROBLEMS 10
  • MATLAB EXERCISES 10
  • Suggested References 10
  • 11. Tropical Dynamics
  • 11.1 THE OBSERVED STRUCTURE OF LARGE-SCALE TROPICAL CIRCULATIONS
  • 11.1.1 The Intertropical Convergence Zone
  • 11.1.2 EquatorialWave Disturbances
  • 11.1.3 AfricanWave Disturbances
  • 11.1.4 Tropical Monsoons
  • 11.1.5 TheWalker Circulation
  • 11.1.6 El Ni ˜ no and the Southern Oscillation
  • 11.1.7 Equatorial Intraseasonal Oscillation
  • 11.2 SCALE ANALYSIS OF LARGE-SCALE TROPICAL MOTIONS
  • 11.3 CONDENSATION HEATING
  • 11.4 EQUATORIALWAVE THEORY
  • 11.4.1 Equatorial Rossby and Rossby–Gravity Modes
  • 11.4.2 Equatorial KelvinWaves
  • 11.5 STEADY FORCED EQUATORIAL MOTIONS
  • PROBLEMS 11
  • MATLAB EXERCISES 11
  • Suggested References 11
  • 12. Middle Atmosphere Dynamics
  • 12.1 STRUCTURE AND CIRCULATION OF THE MIDDLE ATMOSPHERE
  • 12.2 THE ZONAL-MEAN CIRCULATION OF THE MIDDLE ATMOSPHERE
  • 12.2.1 Lagrangian Motion of Air Parcels
  • 12.2.2 The Transformed Eulerian Mean
  • 12.2.3 Zonal-Mean Transport
  • 12.3 VERTICALLY PROPAGATING PLANETARYWAVES
  • 12.3.1 Linear RossbyWaves
  • 12.3.2 RossbyWavebreaking
  • 12.4 SUDDEN STRATOSPHERICWARMINGS
  • 12.5 WAVES IN THE EQUATORIAL STRATOSPHERE
  • 12.5.1 Vertically Propagating KelvinWaves
  • 12.5.2 Vertically Propagating Rossby–GravityWaves
  • 12.5.3 Observed EquatorialWaves
  • 12.6 THE QUASI-BIENNIAL OSCILLATION
  • 12.7 TRACE CONSTITUENT TRANSPORT
  • 12.7.1 Dynamical Tracers
  • 12.7.2 Chemical Tracers
  • 12.7.3 Transport in the Stratosphere
  • PROBLEMS 12
  • MATLAB EXERCISES 12
  • Suggested References 12
  • 13. Numerical Modeling and Prediction
  • 13.1 HISTORICAL BACKGROUND
  • 13.2 FILTERING METEOROLOGICAL NOISE
  • 13.3 NUMERICAL APPROXIMATION OF THE EQUATIONS OF MOTION
  • 13.3.1 Finite Differences
  • 13.3.2 Centered Differences: Explicit Time Differencing
  • 13.3.3 Computational Stability
  • 13.3.4 Implicit Time Differencing
  • 13.3.5 The Semi-Lagrangian Integration Method
  • 13.3.6 Truncation Error
  • 13.4 THE BAROTROPIC VORTICITY EQUATION IN FINITE DIFFERENCES
  • 13.5 THE SPECTRAL METHOD
  • 13.5.1 The Barotropic Vorticity Equation in Spherical Coordinates
  • 13.5.2 Rossby–HaurwitzWaves
  • 13.5.3 The Spectral Transform Method
  • 13.6 PRIMITIVE EQUATION MODELS
  • 13.6.1 The Ecmwf Grid Point Model
  • 13.6.2 Spectral Models
  • 13.6.3 Physical Parameterizations
  • 13.7 DATA ASSIMILATION
  • 13.7.1 The Initialization Problem
  • 13.7.2 Nonlinear Normal Mode Initialization
  • 13.7.3 Four-Dimensional Data Assimilation
  • 13.8 PREDICTABILITY AND ENSEMBLE PREDICTION SYSTEMS
  • PROBLEMS 13
  • MATLAB EXERCISES 13
  • Suggested References 13
  • Appendix A: Useful Constants and Parameters
  • Appendix B: List of Symbols
  • Appendix C: Vector Analysis
  • C.1 VECTOR IDENTITIES
  • C.2 INTEGRAL THEOREMS
  • C.3 VECTOR OPERATIONS IN VARIOUS COORDINATE SYSTEMS
  • Appendix D: Moisture Variables
  • D.1 EQUIVALENT POTENTIAL TEMPERATURE
  • D.2 PSEUDOADIABATIC LAPSE RATE
  • Appendix E: Standard Atmosphere Data
  • Appendix F: Symmetric Baroclinic Oscillations
  • Bibliography
  • Index
Show More

Additional information

Veldu vöru

Rafbók til eignar

Reviews

There are no reviews yet.

Be the first to review “An Introduction to Dynamic Meteorology”

Netfang þitt verður ekki birt. Nauðsynlegir reitir eru merktir *

Aðrar vörur

0
    0
    Karfan þín
    Karfan þín er tómAftur í búð