Construction Materials

Höfundur Marios Soutsos and Peter Domone

Útgefandi Taylor & Francis

Snið ePub

Print ISBN 9781498741101

Útgáfa 5

Útgáfuár 2018

10.790 kr.

Description

Efnisyfirlit

  • Cover
  • Half Title
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • Acknowledgements
  • Editors
  • Contributors
  • Part I: Fundamentals
  • 1. Atoms, bonding, energy and equilibrium
  • 1.1 Atomic structure
  • 1.2 Bonding of atoms
  • 1.2.1 Ionic bonding
  • 1.2.2 Covalent bonding
  • 1.2.3 Metallic bonds
  • 1.2.4 Van der Waals bonds and the hydrogen bond
  • 1.3 Energy and entropy
  • 1.3.1 Stable and metastable equilibrium
  • 1.3.2 Mixing
  • 1.3.3 Entropy
  • 1.3.4 Free energy
  • 1.4 Equilibrium and equilibrium diagrams
  • 1.4.1 Single component diagrams
  • 1.4.2 Two-component diagrams
  • 1.4.3 Eutectic systems
  • 1.4.4 Intermediate compounds
  • References
  • 2. Mechanical properties of solids
  • 2.1 Stress, strain and stress–strain curves
  • 2.2 Elastic behaviour and the elastic constants
  • 2.2.1 The elastic moduli
  • 2.2.2 Poisson’s ratio
  • 2.2.3 Relationships between the elastic constants
  • 2.2.4 Work done in deformation
  • 2.3 Plastic deformation
  • 2.4 Failure in tension
  • 2.5 True stress and strain
  • 2.6 Behaviour in compression
  • 2.6.1 Plastic deformation of ductile materials
  • 2.6.2 Failure of brittle materials
  • 2.7 Behaviour under constant load: Creep
  • 2.8 Behaviour under cyclic loading: Fatigue
  • 2.8.1 Fatigue life and S/N curves
  • 2.8.2 Cumulative fatigue damage: Miner’s rule
  • 2.9 Impact loading
  • 2.10 Variability, characteristic strength and the Weibull distribution
  • 2.10.1 Descriptions of variability
  • 2.10.2 Characteristic strength
  • 2.10.3 The Weibull distribution
  • References
  • 3. Structure of solids
  • 3.1 Crystal structure
  • 3.2 Imperfection and impurities
  • 3.3 Crystal growth and grain structure
  • 3.4 Ceramics
  • 3.5 Polymers
  • References
  • 4. Fracture and toughness
  • 4.1 Theoretical strength
  • 4.2 Fracture mechanics
  • References
  • 5. Liquids, viscoelasticity and gels
  • 5.1 Liquids
  • 5.2 Viscoelastic behaviour
  • 5.3 Gels and thixotropy
  • 6. Surfaces
  • 6.1 Surface energy
  • 6.2 Wetting
  • 6.3 Adhesives
  • 6.4 Adsorption
  • 6.5 Water of crystallisation
  • 7. Electrical and thermal properties
  • 7.1 Electrical conductivity
  • 7.2 Thermal conductivity
  • 7.3 Coefficient of thermal expansion
  • Example questions for Part I Fundamentals
  • Further reading for Part I Fundamentals
  • Part II: Metals and alloys
  • 8. Deformation and strengthening of metals
  • 8.1 Elasticity and plasticity
  • 8.2 Dislocation movement
  • 8.3 Dislocation energy
  • 8.4 Strengthening of metals
  • 8.4.1 Grain size
  • 8.4.2 Strain hardening
  • 8.4.3 Annealing
  • 8.4.4 Alloying
  • 8.4.5 Quenching and tempering
  • 8.5 Strengthening, ductility and toughness
  • References
  • 9. Forming of metals
  • 9.1 Castings
  • 9.2 Hot working
  • 9.3 Cold working
  • 9.4 Joining
  • 9.4.1 Welding
  • 9.4.2 Brazing, soldering and gluing
  • 9.4.3 Bolting and riveting
  • References
  • 10. Oxidation and corrosion
  • 10.1 Dry oxidation
  • 10.2 Wet corrosion
  • 10.3 The electromotive series
  • 10.4 Localised corrosion
  • 10.4.1 Intergranular attack
  • 10.4.2 Concentration cell corrosion
  • 10.4.3 Stress corrosion cracking
  • 10.4.4 Corrosion fatigue
  • 10.5 Corrosion prevention
  • 10.5.1 Design
  • 10.5.2 Coatings
  • 10.5.3 Cathodic protection
  • 10.6 Corrosion control
  • References
  • 11. Iron and steel
  • 11.1 Extraction of iron
  • 11.2 Iron–carbon equilibrium diagram
  • 11.3 Cast irons
  • 11.4 Steel
  • 11.4.1 Hot-rolled structural steels
  • 11.4.2 Cold-rolled steels
  • 11.4.3 Stainless steel
  • 11.4.4 Steel reinforcement for concrete
  • 11.4.5 Prestressing steel
  • 11.5 Recycling of steel
  • References
  • 12. Aluminium
  • 12.1 Extraction
  • 12.2 Aluminium alloys
  • 12.3 Recycling of aluminium
  • Example questions for Part II Metals and alloys
  • Further reading for Part II Metals and alloys
  • Part III: Concrete
  • 13. Portland cements
  • 13.1 Manufacture
  • 13.2 Physical properties
  • 13.3 Chemical composition
  • 13.4 Hydration
  • 13.5 Structure and strength of hcp
  • 13.6 Water in hcp and drying shrinkage
  • 13.7 Modifications of Portland cement
  • 13.7.1 Setting, strength gain and heat output
  • 13.7.2 Sulphate resistance
  • 13.7.3 White cement
  • 13.8 Cement standards and nomenclature
  • References
  • 14. Admixtures
  • 14.1 Action and classification of admixtures
  • 14.2 Plasticisers
  • 14.3 Superplasticisers
  • 14.4 Accelerators
  • 14.5 Retarders
  • 14.6 Air-entraining agents
  • 14.7 Other types of admixtures
  • References
  • 15. Additions
  • 15.1 Pozzolanic behaviour
  • 15.2 Common additions
  • 15.3 Chemical composition and physical properties
  • 15.4 Supply and specification
  • 16. Other types of cement
  • 16.1 Calcium aluminate cement
  • 16.1.1 Manufacture and composition
  • 16.1.2 Hydration and conversion
  • 16.1.3 Uses
  • 16.2 Alkali-activated cements
  • 16.3 Geopolymer cements
  • 16.4 Magnesium oxide-based cements
  • 16.5 Waste-derived cements
  • References
  • 17. Aggregates for concrete
  • 17.1 Types of primary aggregates
  • 17.1.1 Normal-density aggregates
  • 17.1.2 Lightweight aggregate
  • 17.1.3 Heavyweight aggregates
  • 17.2 Aggregate classification: Shape and size
  • 17.3 Other properties of aggregates
  • 17.3.1 Porosity and absorption
  • 17.3.2 Elastic properties and strength
  • 17.3.3 Surface characteristics
  • 17.4 Secondary aggregates
  • References
  • 18. Properties of fresh concrete
  • 18.1 General behaviour
  • 18.2 Measurement of consistence
  • 18.2.1 Fundamental properties
  • 18.2.2 Single-point tests
  • 18.3 Factors affecting consistence
  • 18.4 Loss of consistence
  • References
  • 19. Early-age properties of concrete
  • 19.1 Behaviour after placing
  • 19.1.1 Segregation and bleeding
  • 19.1.2 Plastic settlement
  • 19.1.3 Plastic shrinkage
  • 19.1.4 Methods of reducing segregation and bleed and their effects
  • 19.2 Curing
  • 19.3 Strength gain and temperature effects
  • 19.3.1 Effect of temperature
  • 19.3.2 Maturity
  • 19.3.3 Heat of hydration effects
  • References
  • 20. Deformation of concrete
  • 20.1 Drying shrinkage
  • 20.1.1 Drying shrinkage of hcp
  • 20.1.2 Mechanisms of shrinkage and swelling
  • 20.1.2.1 Capillary tension
  • 20.1.2.2 Surface tension or surface energy
  • 20.1.2.3 Disjoining pressure
  • 20.1.2.4 Movement of interlayer water
  • 20.1.3 Drying shrinkage of concrete
  • 20.1.3.1 Effect of mix constituents and proportions
  • 20.1.3.2 Effect of specimen geometry
  • 20.1.4 Prediction of shrinkage
  • 20.2 Autogenous shrinkage
  • 20.3 Carbonation shrinkage
  • 20.4 Thermal expansion
  • 20.4.1 Thermal expansion of hcp
  • 20.4.2 Thermal expansion of concrete
  • 20.5 Stress–strain behaviour
  • 20.5.1 Elasticity of the hcp
  • 20.5.2 Models for concrete behaviour
  • 20.5.2.1 Model A: Phases in parallel
  • 20.5.2.2 Model B: Phases in series
  • 20.5.2.3 Model C: Combined
  • 20.5.3 Measured stress–strain behaviour of concrete
  • 20.5.4 Elastic modulus of concrete
  • 20.5.5 Poisson’s ratio
  • 20.6 Creep
  • 20.6.1 Factors influencing creep
  • 20.6.2 Mechanisms of creep
  • 20.6.2.1 Moisture diffusion
  • 20.6.2.2 Structural adjustment
  • 20.6.2.3 Microcracking
  • 20.6.2.4 Delayed elastic strain
  • 20.6.3 Prediction of creep
  • References
  • 21. Strength and failure of concrete
  • 21.1 Strength tests
  • 21.1.1 Compressive strength
  • 21.1.2 Tensile strength
  • 21.1.2.1 Splitting test
  • 21.1.2.2 Flexural test
  • 21.1.3 Relationship between strength measurements
  • 21.2 Factors influencing strength of Portland cement concrete
  • 21.2.1 Transition/interface zone
  • 21.2.2 Water/cement ratio
  • 21.2.3 Age
  • 21.2.4 Temperature
  • 21.2.5 Humidity
  • 21.2.6 Aggregate properties, size and volume concentration
  • 21.3 Strength of concrete containing additions
  • 21.4 Cracking and fracture in concrete
  • 21.4.1 Development of microcracking
  • 21.4.2 Creep rupture
  • 21.4.3 The fracture mechanics approach
  • 21.5 Strength under multiaxial loading
  • References
  • 22. Concrete mix design
  • 22.1 The mix design process
  • 22.1.1 Specified concrete properties
  • 22.1.2 Constituent material properties
  • 22.1.3 Initial estimate of mix proportions
  • 22.1.4 Laboratory trial mixes
  • 22.1.5 Full-scale trial mixes
  • 22.2 U.K. method of ‘Design of normal concrete mixes’ (BRE, 1997)
  • 22.2.1 Target mean strength
  • 22.2.2 Free water/cement ratio
  • 22.2.3 Free water content
  • 22.2.4 Cement content
  • 22.2.5 Total aggregate content
  • 22.2.6 Fine and coarse aggregate content
  • 22.3 Mix design with additions
  • 22.4 Design of mixes containing admixtures
  • 22.4.1 Mixes with plasticisers
  • 22.4.2 Mixes with superplasticisers
  • 22.4.3 Mixes with air-entraining agents
  • 22.5 Other mix design methods
  • References
  • 23. Non-destructive testing of hardened concrete
  • 23.1 Surface hardness: Rebound (or Schmidt) hammer test
  • 23.2 Ultrasonic pulse velocity test
  • 23.3 Resonant frequency test
  • 23.4 Near-to-surface tests
  • 23.5 Other tests
  • References
  • 24. Durability of concrete
  • 24.1 Transport mechanisms through concrete
  • 24.2 Measurements of flow constants for cement paste and concrete
  • 24.2.1 Permeability
  • 24.2.2 Diffusivity
  • 24.2.3 Sorptivity
  • 24.3 Degradation of concrete
  • 24.3.1 Attack by sulphates
  • 24.3.2 The thaumasite form of sulphate attack
  • 24.3.3 Sea water attack
  • 24.3.4 Acid attack
  • 24.3.5 Alkali–aggregate and alkali–silica reaction
  • 24.3.6 Frost attack: Freeze–thaw damage
  • 24.3.7 Fire resistance
  • 24.4 Durability of steel in concrete
  • 24.4.1 General principles of the corrosion of the steel in concrete
  • 24.4.2 Carbonation-induced corrosion
  • 24.4.3 Chloride-induced corrosion
  • References
  • 25. Special concretes
  • 25.1 Lightweight aggregate concrete
  • 25.2 High-density aggregate concrete
  • 25.3 No-fines concrete
  • 25.4 Sprayed concrete
  • 25.5 High-strength concrete
  • 25.6 Flowing concrete
  • 25.7 Self-compacting concrete
  • 25.8 Underwater concrete
  • 25.9 Foamed concrete
  • 25.10 Aerated concrete
  • References
  • 26. Recycling of concrete
  • 26.1 Recycling of fresh concrete
  • 26.2 Recycling of concrete after demolition
  • References
  • Example questions for Part III Concrete
  • Further reading for Part III Concrete
  • Part IV: Polymers
  • 27. Polymers: Types, properties and applications
  • 27.1 Polymeric materials
  • 27.1.1 Thermoplastic polymers
  • 27.1.2 Thermosetting polymers
  • 27.1.3 Foamed polymers
  • 27.2 Processing of thermoplastic polymers
  • 27.2.1 Profile production
  • 27.2.2 Film-blown plastic sheet
  • 27.2.3 Blow-moulded hollow plastic articles
  • 27.2.4 Co-extrusion items
  • 27.2.5 Highly orientated grid sheets
  • 27.3 Polymer properties
  • 27.3.1 Mechanical properties
  • 27.3.2 Time-dependent characteristics
  • 27.4 Applications and uses of polymers
  • 27.4.1 Sealants
  • 27.4.2 Adhesives
  • 27.4.3 Elastomers
  • 27.4.4 Geosynthetics
  • 27.4.4.1 Geotextiles
  • 27.4.4.2 Geomembranes
  • 27.4.4.3 Geo-linear elements
  • 27.4.4.4 Geogrids
  • 27.4.4.5 Geocomposites
  • References
  • Bibliography
  • Example questions for Part IV Polymers
  • Further reading for Part IV Polymers
  • Part V: Fibre composites
  • 28. Reinforcing fibre materials
  • 28.1 Glass fibres
  • 28.2 Carbon fibres
  • 28.3 Polymer fibres
  • 28.3.1 Aramid fibres
  • 28.4 Natural fibres
  • 28.5 Steel fibres
  • 28.6 Asbestos fibres
  • References
  • 29. Reinforcing fibre architecture
  • 29.1 Volume fraction
  • 29.2 Reinforcement elements
  • 29.3 Reinforcement layouts
  • 29.3.1 Fibre length and the critical length
  • 29.3.2 Fibre orientation
  • 29.3.3 Efficiency factors
  • 29.3.4 Textile reinforcement
  • References
  • 30. Matrices
  • 30.1 Fibre-reinforced polymer matrices
  • 30.2 Fibre-reinforced concrete matrices
  • References
  • 31. Interfaces and bonding
  • 31.1 Interfaces and bonding in frp
  • 31.1.1 Coupling agents and surface treatments
  • 31.1.2 Bonding
  • 31.2 Interfaces and bonding in frc
  • 31.2.1 Interfacial morphology and properties
  • 31.2.2 Bonding
  • References
  • 32. Mechanical behaviour and properties of composites
  • 32.1 Fundamental composite properties
  • 32.1.1 Longitudinal stiffness
  • 32.1.2 Transverse stiffness
  • 32.1.3 Intermediate behaviour, efficiency factors and composite strength
  • 32.2 Complex composite behaviour
  • 32.3 Laminate composite behaviour (frp)
  • 32.4 Brittle matrix composite theory (frc)
  • 32.4.1 Composite materials approach
  • 32.4.2 Critical fibre volume fraction
  • 32.4.3 Primary frc: ACK theory and multiple cracking
  • 32.4.4 Post-cracking behaviour
  • 32.4.5 Failure, post-peak behaviour and secondary frc
  • 32.4.6 Intermediate behaviour
  • 32.4.7 High modulus/high Vf behaviour
  • 32.4.8 Fracture mechanics approach
  • 32.4.9 Crack suppression
  • 32.4.10 Crack stabilisation
  • 32.4.11 Fibre/matrix debonding
  • 32.5 Typical mechanical properties
  • References
  • 33. Manufacture of fibre composites
  • 33.1 Manufacture of frp for construction
  • 33.1.1 Manual processes for frp
  • 33.1.2 Semi-automated processes for frp
  • 33.1.3 Automated processes for frp
  • 33.2 Manufacture of frc
  • 33.2.1 Cast premix
  • 33.2.2 Sprayed premix
  • 33.2.3 Dual-spray systems
  • 33.2.4 Hand lay-up
  • 33.2.5 Automated systems
  • References
  • 34. Applications of fibre composites in construction
  • 34.1 Applications for frp in construction
  • 34.1.1 Structural systems
  • 34.1.2 Rehabilitation systems
  • 34.1.3 Concrete column confinement
  • 34.1.4 Internal concrete reinforcement
  • 34.1.5 Hybrid systems
  • 34.1.6 Bridge enclosures
  • 34.2 Applications for frc in construction
  • 34.2.1 Architectural cladding: Glass-frc
  • 34.2.2 Tunnel linings: Steel-frc and polymer-frc
  • 34.2.3 Industrial flooring: Steel-frc and polymer-frc
  • 34.2.4 Sheet materials for building: Natural-frc
  • 34.2.5 Permanent formwork: Glass-frc
  • References
  • 35. Durability
  • 35.1 Durability of frp
  • 35.1.1 Moisture and solutions
  • 35.1.2 Temperature effects
  • 35.1.3 Ultraviolet radiation
  • 35.1.4 Fatigue
  • 35.1.5 Creep
  • 35.1.6 Bond durability in strengthening systems
  • 35.1.7 Durability of frp rebars
  • 35.1.8 Material degradation models for frp
  • 35.2 Durability of frc
  • 35.2.1 Multifilament/microfibre frc
  • 35.2.2 Monofilament/macrofibre frc
  • 35.2.3 Property loss mechanisms
  • 35.2.4 Fibre weakening
  • 35.2.5 Continued matrix hydration
  • 35.2.6 Designing durable frc
  • 35.2.7 Modelling and service life prediction
  • References
  • 36. Recycling
  • 36.1 Recycling of frp
  • 36.2 Recycling of frc
  • References
  • Example questions for Part V Composites
  • Further reading for Part V Composites
  • Part VI: Glass
  • 37. Manufacture and processing
  • 37.1 Manufacturing of flat glass
  • 37.1.1 Glassmaking materials
  • 37.1.2 Composition
  • 37.1.3 Constituents and microstructure of glass
  • 37.1.4 Historical processes
  • 37.1.5 Rolled glass (including wired and polished wired)
  • 37.1.6 Float glass
  • 37.1.7 Fusion-draw process
  • 37.2 Coatings
  • 37.2.1 Low emissivity
  • 37.2.2 Solar control
  • 37.2.3 Selective, high performance
  • 37.2.4 Self-cleaning
  • 37.3 Strengthening processes
  • 37.3.1 Toughening (tempering) and the heat soak test
  • 37.3.2 Heat strengthening
  • 37.3.3 Chemical strengthening
  • 37.4 Forming processes
  • 37.4.1 Bending
  • 37.4.2 Bending and tempering
  • 37.4.3 Channel glass
  • 37.5 Decoration processes
  • 37.5.1 Sand blasting
  • 37.5.2 Acid etching
  • 37.5.3 Fritting
  • 37.5.4 Stained glass
  • 37.5.5 Printing
  • 37.6 Laminating
  • 37.7 Insulating unit manufacture
  • 37.8 Fire-resisting glasses
  • References
  • 38. Properties and performance
  • 38.1 Physical properties
  • 38.2 Mechanical properties
  • 38.2.1 Patterns of breakage
  • 38.2.2 Strength of glass
  • 38.2.3 Static fatigue
  • 38.2.4 Post-breakage characteristics of laminated glass combinations
  • 38.2.4.1 Annealed/annealed
  • 38.2.4.2 Heat strengthened/heat strengthened
  • 38.2.4.3 Toughened/toughened
  • 38.2.4.4 Toughened/heat strengthened
  • References
  • 39. Design and applications
  • 39.1 Design of glazing and selection of glass type
  • 39.2 Deflection limits for glazing
  • 39.2.1 Deflection criteria
  • 39.2.2 Guidance from standards
  • 39.3 Design stresses and load factors
  • 39.3.1 Strength of laminated glass
  • 39.4 Windows
  • 39.4.1 Design of insulating units
  • 39.5 Glass walls and structural glass assemblies
  • 39.6 Skylights
  • 39.7 Floors and stairs
  • 39.8 Glazing for security
  • References
  • 40. Service and end of life
  • 40.1 Durability
  • 40.1.1 Cleaning
  • 40.1.2 Protection on site
  • 40.1.3 Failure of double-glazed units
  • 40.1.4 Delamination of laminated glass
  • 40.2 What to do if glass breaks
  • 40.3 Disposal and recycling
  • References
  • Example questions for Part VI Glass
  • Further reading for Part VI Glass
  • Part VII: Timber
  • 41. Structure of timber and the presence of moisture
  • 41.1 Structure at the macroscopic level
  • 41.2 Structure at the microscopic level
  • 41.3 Molecular structure and ultrastructure
  • 41.3.1 Chemical constituents
  • 41.3.1.1 Cellulose
  • 41.3.1.2 Hemicelluloses and lignin
  • 41.3.1.3 Extractives
  • 41.3.1.4 Minerals
  • 41.3.1.5 Acidity
  • 41.3.2 The cell wall as a fibre composite
  • 41.3.3 Cell wall layers
  • 41.4 Variability in structure
  • 41.5 Appearance of timber in relation to its structure
  • 41.5.1 Texture
  • 41.5.2 Figure
  • 41.5.2.1 Grain
  • 41.5.2.2 Growth rings
  • 41.5.2.3 Rays
  • 41.5.2.4 Knots
  • 41.5.3 Colour
  • 41.6 Mass–volume relationships
  • 41.6.1 Density
  • 41.6.2 Specific gravity
  • 41.6.3 Density of the dry cell wall
  • 41.6.4 Porosity
  • 41.7 Moisture in timber
  • 41.7.1 Equilibrium moisture content
  • 41.7.2 Determination of moisture content
  • 41.7.3 The moisture content of green timber
  • 41.7.4 Removal of moisture from timber
  • 41.7.5 Influence of structure
  • 41.7.6 Fibre saturation point
  • 41.7.7 Sorption
  • 41.8 Flow in timber
  • 41.8.1 Bulk flow and permeability
  • 41.8.1.1 Flow of fluids
  • 41.8.1.2 Flow paths in timber
  • 41.8.1.3 Timber and the laws of flow
  • 41.8.2 Moisture diffusion
  • 41.8.3 Thermal conductivity
  • References
  • 42. Deformation in timber
  • 42.1 Introduction
  • 42.2 Dimensional change due to moisture
  • 42.2.1 Shrinkage
  • 42.2.1.1 Anisotropy in shrinkage
  • 42.2.1.2 Practical significance
  • 42.2.2 Movement
  • 42.3 Thermal movement
  • 42.4 Deformation under load
  • 42.4.1 Elastic deformation
  • 42.4.1.1 Orthotropic elasticity and timber
  • 42.4.1.2 Factors influencing the elastic modulus
  • 42.4.2 Viscoelastic deformation
  • 42.4.2.1 Creep
  • References
  • 43. Strength and failure in timber
  • 43.1 Introduction
  • 43.2 Determination of strength
  • 43.2.1 Test piece size and selection
  • 43.2.1.1 Use of small clear test pieces
  • 43.2.1.2 Use of structural-size test pieces
  • 43.2.2 Standardised test procedures
  • 43.3 Strength values
  • 43.3.1 Derived using small clear test pieces
  • 43.3.2 Derived using structural-size test pieces
  • 43.4 Variability in strength values
  • 43.5 Inter-relationships among the strength properties
  • 43.5.1 Modulus of rupture (bending strength) and modulus of elasticity
  • 43.5.2 Impact bending and total work
  • 43.5.3 Hardness and compression perpendicular to the grain
  • 43.6 Factors affecting strength
  • 43.6.1 Anisotropy and grain angle
  • 43.6.2 Knots
  • 43.6.3 Density
  • 43.6.4 Ring width
  • 43.6.5 Ratio of latewood to earlywood
  • 43.6.6 Cell length
  • 43.6.7 Microfibrillar angle
  • 43.6.8 Chemical composition
  • 43.6.9 Reaction wood
  • 43.6.9.1 Compression wood
  • 43.6.9.2 Tension wood
  • 43.6.10 Moisture content
  • 43.6.11 Temperature
  • 43.6.12 Time
  • 43.6.12.1 Rate of loading
  • 43.6.12.2 Duration of load
  • 43.7 Strength, toughness, failure and fracture morphology
  • 43.7.1 Classical approach
  • 43.7.1.1 Tensile strength parallel to the grain
  • 43.7.1.2 Compression strength parallel to the grain
  • 43.7.1.3 Static bending
  • 43.7.1.4 Toughness
  • 43.7.1.5 Fatigue
  • 43.7.2 Engineering approach to strength and fracture
  • 43.8 Structural design in timber
  • 43.8.1 Visual grading
  • 43.8.2 Machine grading
  • 43.8.3 Strength classes
  • 43.8.4 Structural design
  • References
  • 44. Durability of timber
  • 44.1 Introduction
  • 44.2 Chemical, physical and mechanical agencies affecting durability and causing degradation
  • 44.2.1 Photochemical degradation
  • 44.2.2 Chemical degradation
  • 44.2.3 Thermal degradation
  • 44.2.4 Mechanical degradation
  • 44.3 Natural durability and attack by fungi and insects
  • 44.3.1 Natural durability
  • 44.3.2 Nature of fungal decay
  • 44.3.3 Nature of insect attack
  • 44.3.4 Marine borers
  • 44.4 Performance of timber in fire
  • 44.4.1 Methods of assessing reaction to fire of constructional materials
  • 44.4.1.1 The U.K. position
  • 44.4.1.2 The use of national and CEN standards
  • References
  • 45. Processing and recycling of timber
  • 45.1 Introduction
  • 45.2 Mechanical processing
  • 45.2.1 Solid timber
  • 45.2.1.1 Sawing and planing
  • 45.2.1.2 Steam bending
  • 45.2.2 Wood-based panels (board materials)
  • 45.2.2.1 Plywood
  • 45.2.2.2 Particleboard (chipboard)
  • 45.2.2.3 MDF (dry-process fibreboard)
  • 45.2.2.4 Wet-process fibreboard
  • 45.2.2.5 OSB (oriented strand board)
  • 45.2.2.6 CBPB (cement bonded particleboard)
  • 45.2.2.7 Comparative performance of the wood-based boards
  • 45.2.3 Laminated timber
  • 45.2.4 Engineered structural lumber
  • 45.2.5 Mechanical pulping
  • 45.2.6 Recycling of timber waste
  • 45.2.6.1 Case study 1
  • 45.2.6.2 Case study 2
  • 45.2.6.3 Case study 3
  • 45.3 Chemical processing
  • 45.3.1 Treatability
  • 45.3.1.1 Preservatives and preservation
  • 45.3.1.2 Flame retardants
  • 45.3.1.3 Dimensional stabilisers and durability enhancers
  • 45.3.2 Chemical pulping
  • 45.3.3 Other chemical processes
  • 45.4 Thermal processing
  • 45.5 Finishes
  • 45.5.1 Flame-retardant coatings
  • References
  • Example questions for Part VII Timber
  • Further reading for Part VII Timber
  • Part VIII: Masonry: Brickwork, blockwork and stonework
  • 46. Materials and components for masonry
  • 46.1 Basic terminology
  • 46.2 Materials used for manufacture of units and mortars
  • 46.2.1 Rocks, sand and fillers
  • 46.2.1.1 Rock (or stone)
  • 46.2.1.2 Sand: Nature and composition
  • 46.2.1.3 Mortar and rendering sands
  • 46.2.1.4 Fly ash (pulverised fuel ash)
  • 46.2.1.5 Chalk (CaCO3)
  • 46.2.2 Clays
  • 46.2.3 Lightweight aggregates
  • 46.2.4 Binders
  • 46.2.4.1 Cement
  • 46.2.4.2 Masonry cement
  • 46.2.4.3 Lime and hydraulic lime
  • 46.2.4.4 Calcium silicate
  • 46.3 Other constituents and additives
  • 46.3.1 Organic plasticisers
  • 46.3.2 Latex additives
  • 46.3.3 Pigments
  • 46.3.4 Retarders
  • 46.3.5 Accelerators
  • 46.4 Mortar
  • 46.4.1 Properties of freshly mixed (unset) mortar
  • 46.4.2 Properties of hardened mortar
  • 46.4.3 Thin-bed and lightweight mortars
  • 46.5 Fired clay bricks and blocks
  • 46.5.1 Forming and firing
  • 46.5.1.1 Soft mud process
  • 46.5.1.2 Stiff plastic process
  • 46.5.1.3 Wirecut process
  • 46.5.1.4 Semi-dry pressing
  • 46.5.1.5 Drying and firing in Hoffman kilns
  • 46.5.1.6 Drying and firing in tunnel kilns
  • 46.5.1.7 Clamps
  • 46.5.1.8 Intermittent kilns
  • 46.5.2 Properties
  • 46.6 Calcium silicate units
  • 46.7 Concrete and manufactured stone units
  • 46.7.1 Production processes for concrete units
  • 46.7.1.1 Casting concrete
  • 46.7.1.2 Pressing of concrete
  • 46.7.1.3 Curing
  • 46.7.2 Concrete products
  • 46.7.2.1 Dense aggregate concrete blocks and concrete bricks
  • 46.7.2.2 Manufactured stone masonry units
  • 46.7.2.3 Lightweight aggregate concrete blocks
  • 46.8 Aircrete (AAC)
  • 46.8.1 Manufacturing process
  • 46.8.2 Properties
  • 46.9 Natural stone units
  • 46.10 Ancillary devices
  • References
  • 47. Masonry construction and forms
  • 47.1 Walls and other masonry forms
  • 47.2 Bond patterns
  • 47.3 Use of specials
  • 47.4 Joint style
  • 47.5 Workmanship and accuracy
  • 47.6 Buildability, site efficiency and productivity
  • 47.7 Appearance
  • References
  • 48. Structural behaviour and movement of masonry
  • 48.1 General considerations
  • 48.2 Compressive loading
  • 48.2.1 Axial loads
  • 48.2.2 Stability: Slender structures and eccentricity
  • 48.2.3 Concentrated load
  • 48.2.4 Cavity walls in compression
  • 48.3 Shear loading
  • 48.4 Flexure (bending)
  • 48.5 Tension
  • 48.6 Elastic modulus
  • 48.7 Building (seismic) behaviour
  • 48.8 Movement and creep
  • References
  • 49. Non-structural physical properties of masonry
  • 49.1 Thermal performance
  • 49.2 Resistance to damp and rain penetration
  • 49.3 Moisture vapour permeability
  • 49.4 Sound transmission
  • 49.5 Fire resistance
  • References
  • 50. Deterioration, conservation and strengthening of masonry
  • 50.1 Chemical attack
  • 50.1.1 Water and acid rain
  • 50.1.2 Carbonation
  • 50.1.3 Sulphate attack
  • 50.1.4 Acids
  • 50.1.5 Chlorides
  • 50.1.6 Corrosion of embedded metals
  • 50.2 Erosion
  • 50.2.1 Freeze–thaw attack
  • 50.2.2 Crypto-efflorescence (sub-florescence) damage
  • 50.2.3 Abrasion
  • 50.3 Stress effects
  • 50.4 Staining
  • 50.4.1 Efflorescence
  • 50.4.2 Lime staining
  • 50.4.3 Iron staining
  • 50.4.4 Biological staining
  • 50.5 Conservation of masonry
  • 50.5.1 Principles
  • 50.5.2 Replacement materials: Stone
  • 50.5.3 Replacement materials: Clay bricks, terracotta ware, concrete and calcium silicate units
  • 50.5.4 Replacement materials: Mortars
  • 50.5.5 Selection of replacement materials
  • 50.5.6 Repair methods
  • 50.5.7 Cleaning of masonry
  • 50.6 Strengthening of masonry
  • 50.6.1 Strengthening of structural elements
  • 50.6.2 Upgrading of connections
  • 50.6.3 Improvement of the global building behaviour
  • References
  • Example questions for Part VIII Masonry: Brickwork, blockwork and stonework
  • Further reading for Part VIII Masonry: Brickwork, blockwork and stonework
  • Part IX: Bituminous materials
  • 51. Components of bituminous materials
  • 51.1 Constituents of bituminous materials
  • 51.2 Bitumen
  • 51.2.1 Sources
  • 51.2.1.1 Natural asphalts
  • 51.2.1.2 Refinery bitumen
  • 51.2.2 Manufacture
  • 51.2.3 Chemistry and molecular structure
  • 51.2.4 Physical and rheological properties
  • 51.3 Types of bitumen
  • 51.3.1 Penetration grade bitumens
  • 51.3.2 Oxidised bitumens
  • 51.3.3 Cutbacks
  • 51.3.4 Emulsions
  • 51.3.5 Polymer-modified bitumens
  • 51.4 Aggregates
  • 51.4.1 Properties
  • References
  • 52. Viscosity, stiffness and deformation of bituminous materials
  • 52.1 Viscosity and rheology of binders
  • 52.2 Empirical measurements of viscosity
  • 52.3 Measurement of viscosity
  • 52.4 Influence of temperature on viscosity
  • 52.5 Resistance of bitumens to deformation
  • 52.6 Determination of permanent deformation
  • 52.7 Factors affecting permanent deformation
  • 52.7.1 Bitumen viscosity
  • 52.7.2 Aggregate
  • 52.7.3 Temperature
  • References
  • 53. Strength and failure of bituminous materials
  • 53.1 The road structure
  • 53.2 Modes of failure in a bituminous structure
  • 53.3 Fatigue characteristics
  • 53.3.1 Stress and strain conditions
  • 53.3.2 The strain criteria
  • 53.3.3 Effect of mixture variables
  • References
  • 54. Durability of bituminous mixtures
  • 54.1 Ageing of bitumen
  • 54.1.1 Oxidation
  • 54.1.2 Loss of volatiles
  • 54.1.3 Ageing index
  • 54.1.4 Bitumen ageing tests
  • 54.2 Permeability
  • 54.2.1 Measurement and voids analysis
  • 54.2.2 Factors affecting permeability
  • 54.3 Adhesion
  • 54.3.1 The nature of the aggregate
  • 54.3.2 The nature of the bitumen
  • 54.3.3 Mechanisms for loss of adhesion
  • 54.3.3.1 Displacement
  • 54.3.3.2 Detachment
  • 54.3.3.3 Film rupture
  • 54.3.3.4 Blistering and pitting
  • 54.3.3.5 Spontaneous emulsification
  • 54.3.3.6 Hydraulic scouring
  • 54.3.3.7 Pore pressure
  • References
  • 55. Design and production of bituminous materials
  • 55.1 Bituminous mixtures
  • 55.1.1 Asphalt concretes
  • 55.1.2 Hot rolled asphalts
  • 55.1.3 Porous asphalt
  • 55.1.4 Stone mastic asphalt
  • 55.2 Recipe and designed mixtures
  • 55.3 Methods of production
  • References
  • 56. Recycling of bituminous materials
  • 56.1 In-plant asphalt recycling
  • 56.1.1 Hot in-plant operations
  • 56.1.2 Cold in-plant processes
  • 56.2 In situ asphalt recycling
  • 56.2.1 Hot in situ asphalt recycling
  • 56.2.1.1 Repave
  • 56.2.1.2 Remix
  • 56.2.2 Cold in situ processes
  • 56.3 Issues related to asphalt recycling
  • 56.3.1 Black rock
  • 56.3.2 Material variability
  • References
  • Example questions for Part IX Bituminous materials
  • Further reading for Part IX Bituminous materials
  • Part X: Selection and sustainable use of construction materials
  • 57. Mechanical properties of materials
  • 57.1 Ranges of properties
  • 57.2 Specific stiffness and specific strength
  • References
  • 58. Sustainability and construction materials
  • 58.1 Global considerations
  • 58.2 Sustainability and the construction industry
  • 58.2.1 Use of materials
  • 58.2.2 Life-cycle assessment
  • 58.2.3 The green hierarchy
  • 58.3 Steel
  • 58.4 Aggregates
  • 58.5 Cement and concrete
  • 58.5.1 Cement
  • 58.5.2 Aggregates for concrete
  • 58.5.3 Concrete
  • 58.6 Asphalt and bituminous materials
  • 58.7 Masonry
  • 58.8 Glass
  • 58.9 Polymers and fibre composites
  • 58.10 Timber
  • References
  • Further reading
  • Index
Show More

Additional information

Veldu vöru

Rafbók til eignar

Reviews

There are no reviews yet.

Be the first to review “Construction Materials”

Netfang þitt verður ekki birt. Nauðsynlegir reitir eru merktir *

Aðrar vörur

0
    0
    Karfan þín
    Karfan þín er tómAftur í búð