Description
Efnisyfirlit
- Foundations of Modern Global Seismology
- Copyright
- Contents
- Preface
- Preface
- Part I – Observational foundations of global seismology
- Part II: Theoretical foundations of seismology
- Part I Observational foundations
- 1 An overview of global seismology
- 1.1 The foundation of seismology: seismograms
- 1.2 The historical development of global seismology
- 1.3 The topics of global seismology
- 1.3.1 Seismic sources
- 1.3.2 Earthquake sources involving shear faulting
- 1.3.3 Seismic waves and seismograms
- 1.3.4 Quantification of earthquakes
- 1.3.5 Earthquake geographic distributions
- 1.3.6 Global faulting patterns and earthquake models
- 1.3.7 Earth’s interior: radial Earth layering
- 1.3.8 Heterogeneous Earth models
- 1.3.9 Summary
- 1.4 Appendix: Great earthquakes, 1900-mid2020
- 2 An overview of earthquake and seismic-wave mechanics
- 2.1 Stress
- 2.2 Strain and rotation
- 2.3 Hooke’s law
- 2.3.1 Elastic potential energy
- 2.4 Earthquakes: conceptual models
- 2.4.1 Elastic rebound
- 2.4.2 Rock friction and frictional sliding
- 2.4.3 Anelastic processes and postseismic relaxation
- 2.4.4 Earthquake scaling relations & stress drop
- 2.4.5 Stress drop, particle velocity, and rupture velocity
- 2.5 Seismic-waves: the elastic equations of motion
- 2.5.1 Harmonic motion
- 2.5.2 Seismic-wave attenuation
- Damped harmonic motion
- The quality factor, Q
- 2.5.3 Seismic wave attenuation in Earth
- 2.6 Summary
- 3 Earthquakes and plate tectonics
- 3.1 Divergent boundaries
- 3.2 Transcurrent boundaries
- 3.3 Convergent boundaries
- 3.3.1 Subduction zones
- 3.3.2 Continental collisions
- 3.4 Intraplate earthquakes
- 3.5 Summary
- 4 Earth motions & seismometry
- 4.1 Introduction
- 4.1.1 Seismic stations, networks, and arrays
- 4.2 Earthquake-related ground motions
- 4.3 Earth’s continuous background motion
- 4.3.1 Ambient background motion power spectra
- 4.3.2 Power spectral density and time-domain ground motions
- 4.3.3 Horizontal and vertical ambient ground motions
- 4.3.4 Diurnal variation in ambient ground motions
- 4.3.5 Seasonal ambient ground motion variations
- 4.3.6 Reducing ambient motions in seismic data
- 4.4 Seismographic systems
- 4.4.1 Inertial pendulum seismometers
- 4.4.2 Electromagnetic seismographs
- 4.4.3 Digital recording and force-feedback sensors
- 4.5 Working with modern seismograms
- 4.5.1 Digital seismic recording systems
- 4.5.2 Removing instrument effects
- 4.5.3 Poles and zeros
- 4.5.4 Digital filters and signal decimation
- 4.5.5 Removing an instrument response by deconvolution
- 4.6 Seismometry’s future
- 4.6.1 Seismometers everywhere
- 4.7 Summary
- 5 Seismogram interpretation and processing
- 5.1 Terminology for seismograms
- 5.2 Characteristics of body wave seismograms
- 5.2.1 Local, regional, and upper mantle
- 5.2.2 Teleseismic
- 5.3 Surface-waves
- 5.4 Travel-time curves
- 5.5 Signal processing basics
- 5.5.1 Time representation of seismic signals
- 5.5.2 Frequency-domain representation of seismic signals
- 5.5.3 Convolution
- 5.6 Picking arrival times
- 5.7 Summary
- 6 An introduction to earthquake location
- 6.1 Seismic arrival times
- 6.1.1 Seismic travel-time curves
- 6.2 Earthquake location with information from a single station
- 6.2.1 Inferring seismic source properties from seismogram characteristics
- 6.2.2 Inferring station-to-source distance & origin time using arrival times
- 6.2.3 Inferring station-to-source direction using ground motion polarization
- 6.3 Earthquake location with information from a seismic network
- 6.3.1 Epicenter estimation with tS – tP measurements
- 6.3.2 Origin-time estimation with Wadati diagrams
- 6.3.3 Refining locations using arrival-time residuals
- 6.4 Earthquake location as an inverse problem
- 6.4.1 A least-squares optimal location estimate
- 6.4.2 Halfspace arrival-time partial derivatives
- A numerical location example
- 6.5 Relative earthquake location methods
- 6.5.1 Master-event methods
- 6.5.2 Joint epicenter/hypocenter determination methods
- 6.5.3 Double-difference methods
- 6.6 Summary
- 7 Earthquake size & descriptive earthquake statistics
- 7.1 The energy in seismic waves
- 7.2 Earthquake magnitude scales
- 7.2.1 Local magnitude (ML)
- 7.2.2 Body-wave magnitude
- 7.2.3 Surface-wave magnitude (MS)
- 7.2.4 Other magnitude scales
- Regional magnitude, mb(Lg)
- Seismic coda magnitude
- 7.2.5 Magnitude saturation
- 7.3 Seismic energy, magnitude, and moment magnitude
- 7.4 Descriptive earthquake statistics
- 7.4.1 The Gutenberg-Richter relationship
- 7.4.2 Earthquake occurrence rates
- 7.5 Patterns in earthquake sequences
- 7.5.1 Foreshock patterns and earthquake nucleation
- 7.5.2 Aftershock patterns and rupture area
- 7.6 Earthquake catalogs
- 7.6.1 Modern earthquake catalogs
- 7.7 Summary
- 8 Earthquake prediction, forecasting, & early warning
- 8.1 The earthquake cycle
- 8.2 Paleoseismology
- 8.3 Earthquake prediction
- 8.3.1 Long-term deformation and earthquake migration patterns
- 8.3.2 Precursory phenomena
- 8.4 Earthquake forecasting and hazard estimation
- 8.5 Earthquake interactions and triggering
- 8.5.1 Static triggering
- 8.5.2 Dynamic triggering
- 8.5.3 Other triggering
- 8.6 Earthquake early warning
- 8.7 Summary
- 9 Tsunami and tsunami warning
- 9.1 Tsunami excitation
- 9.2 Tsunami propagation
- 9.3 Tsunami observation and monitoring
- 9.3.1 Onshore tsunami measurements
- 9.4 Tsunami forecasting and warning
- 9.5 Summary
- 10 Earth structure
- 10.1 Global Earth structure
- 10.2 Crustal structure
- 10.3 Upper-mantle structure
- 10.3.1 Discontinuities and anisotropy
- 10.4 Upper mantle heterogeneity
- 10.5 Lower-mantle structure
- 10.6 Structure of the core
- 10.7 Summary
- Part II Theoretical foundations
- 11 Elasticity and seismic waves
- 11.1 Deformation, deformation gradients, and strain
- 11.1.1 Displacement gradients, strain, and rotation
- Normal strains
- Shear strains
- Rigid-body rotation
- 11.2 Stress
- 11.2.1 The stress tensor
- 11.2.2 Cauchy’s relation
- Representative absolute stresses within Earth
- 11.2.3 The conservation of linear momentum – the equations of equilibrium
- 11.2.4 Conservation of angular momentum stress tensor symmetry
- 11.2.5 Principal stresses
- Tensors and tensor rotation
- 11.3 The equation of motion
- 11.3.1 Hooke’s law and linear elasticity
- Isotropic elastic materials
- Elastic moduli and parameters
- 11.3.2 The equations of motion for linearly elastic materials
- 11.4 Wave equations for P- and S-wave potentials
- 11.4.1 The one-dimensional wave equation and solutions
- General solutions of the 1D wave equation
- Harmonic solutions of the 1D wave equation
- An approximate solution for an inhomogeneous 1D medium
- 11.4.2 Three-dimensional wave solutions
- Plane-wave phase and wavenumber vectors
- P- and S-wave displacements
- Wave polarization on seismograms
- 11.5 Seismic-wave speeds in Earth materials
- 12 Body waves and ray theory – travel times
- 12.1 Wavefronts and rays
- 12.2 The Eikonal equations and seismic rays
- 12.3 Travel times in media with depth-dependent properties
- 12.3.1 The seismic ray parameter (horizontal slowness)
- 12.3.2 Ray-path curvature
- 12.3.3 Distance and travel-time formulas
- 12.3.4 Travel-time curves for continuous media
- 12.4 Travel times in spherical Earth models
- 12.4.1 Travel-time expressions for spherical Earth models
- 12.5 Travel times in layered Earth models
- The layer-over-a-halfspace model
- Hidden layers and blind zones
- 12.6 Body-wave travel-time tables
- 13 Body-waves and ray theory – amplitudes
- 13.1 Geometric spreading in vertically varying media
- 13.2 Geometric spreading in spherical Earth models
- 13.2.1 Seismic-wave energy and amplitude
- 13.3 Body-wave attenuation
- 13.3.1 The standard-linear-solid attenuation model
- 13.3.2 Estimating Q in the seismic band
- 13.4 Seismic-wave reflection & transmission across geologic boundaries
- 13.4.1 P-waves at a fluid-fluid boundary
- Reflection variation with incidence angle / slowness
- 13.4.2 SH-waves at a solid-solid boundary
- 13.4.3 P- & S-waves at a solid-solid boundary
- 13.4.4 P- & S-waves at a solid-fluid boundary
- 13.4.5 P-S-wave reflection at a free surface
- The free-surface receiver functions
- 13.5 Body-wave energy flux factors
- 14 Surface waves
- 14.1 Halfspace Rayleigh waves
- 14.1.1 Halfspace Rayleigh-wave speed
- 14.1.2 Halfspace Rayleigh-wave displacements
- A Poisson solid
- Surface-wave geometric spreading
- 14.2 Love waves in a layer over a halfspace
- 14.3 Dispersion
- 14.3.1 Discrete dispersion
- 14.3.2 Continuous dispersion
- 14.3.3 Calculating group velocity
- 14.4 Dispersion on seismograms
- 14.4.1 Measuring dispersion
- Group-velocity estimation
- Phase-velocity estimation
- 14.4.2 Surface-wave dispersion and shallow Earth structure
- 14.5 Surface waves on a sphere
- 14.6 Surface-wave amplitude and attenuation
- 14.6.1 Geometric spreading
- 14.6.2 Attenuation
- 15 Free oscillations
- 15.1 A vibrating string
- 15.2 A vibrating sphere
- 15.3 Earth’s free oscillations
- 15.3.1 Observing Earth’s natural frequencies of vibration
- Mode splitting
- Mode coupling
- 15.4 Attenuation of free oscillations
- 15.5 Building models of Earth’s interior using normal modes
- 16 Seismic point-source models
- 16.1 An ideal explosion
- 16.2 Faulting sources
- 16.2.1 Shear-faulting nomenclature
- 16.3 Earthquake P-wave “first motions”
- 16.4 Equivalent body forces for seismic sources
- 16.4.1 Seismic point-force sources
- 16.4.2 An ideal explosion
- 16.4.3 An ideal earthquake
- 16.4.3.1 Equivalent body force system non-uniqueness
- 16.5 Seismic moment tensors
- 16.5.1 Moment tensors and shear faulting
- Shear-faulting moment tensors in principle-axis coordinates
- Computing fault-normal and slip vectors from a moment tensor
- Computing seismic moment from a moment tensor
- 16.5.2 Non-double-couple seismic sources
- Moment-tensor decompositions
- 17 Seismic point-source radiation patterns
- 17.1 Elastostatics
- 17.1.1 Static displacement field due to a single force
- 17.1.2 Static displacement field due to a force couple
- 17.1.3 Static displacement field due to a double couple
- 17.2 Elastodynamics
- 17.2.1 Elastodynamic point-force displacements
- 17.2.2 Elastodynamic single-couple displacements
- 17.2.3 Moment-tensor radiation patterns
- 17.2.4 Elastodynamic double-couple displacements
- 17.3 Double-couple radiation patterns in geographic coordinates
- 17.3.1 Body-waves
- 17.3.2 Surface-waves
- 17.4 Estimating faulting geometry
- 17.4.1 P-wave first motion modeling
- 18 Earthquake rupture and source time functions
- 18.1 Rock fracture and fault rupture
- Earthquake rupture dynamics
- 18.1.1 Simple moment-rate function shapes
- 18.2 The one-dimensional Haskell source model
- 18.2.1 Rupture directivity
- 18.3 Seismic source spectra
- 18.3.1 Simple earthquake spectra models
- 18.3.2 Earthquake self similarity
- 18.4 Earthquake-slip heterogeneity
- 18.5 Source-spectrum estimation
- 18.5.1 Source-spectrum estimation
- 18.6 Source-time function estimation
- 18.6.1 Body waves
- 18.6.2 Surface waves
- Empirical Green’s functions
- 19 Imaging seismic-sources
- 19.1 Body waveform modeling – a point source
- 19.1.1 Fundamental fault responses
- 19.1.2 Teleseismic body-wave modeling
- 19.1.3 Moment-tensor inversion
- 19.1.4 Time-dependent moment-tensor inversion
- 19.2 Surface-wave modeling for the seismic source
- 19.3 Global centroid moment-tensor solutions
- 19.4 Iterative sub-event identification
- 19.5 Earthquake finite-fault models
- 20 Imaging Earth’s interior
- 20.1 Earth structure estimation using travel times
- 20.1.1 Herglotz-Wiechert inversion
- 20.1.2 Seismic traveltime tomography
- 20.1.3 Amplitude attenuation tomography
- 20.1.4 Surface-wave dispersion tomography
- 20.2 Discrete geophysical inversion
- 20.2.1 Surface-wave dispersion modeling
- 20.3 Earth structure estimation using seismic amplitudes and waveforms
- 20.3.1 P-wave receiver-function modeling
- 20.4 Full seismogram inversion
- Bibliography
- Index
- Back Cover
Reviews
There are no reviews yet.