Foundations of Modern Global Seismology

Höfundur Charles J. Ammon; Aaron A. Velasco; Thorne Lay; Terry C. Wallace

Útgefandi Elsevier S & T

Snið Page Fidelity

Print ISBN 9780128156797

Útgáfa 2

Útgáfuár 2021

13.490 kr.

Description

Efnisyfirlit

  • Foundations of Modern Global Seismology
  • Copyright
  • Contents
  • Preface
  • Preface
  • Part I – Observational foundations of global seismology
  • Part II: Theoretical foundations of seismology
  • Part I Observational foundations
  • 1 An overview of global seismology
  • 1.1 The foundation of seismology: seismograms
  • 1.2 The historical development of global seismology
  • 1.3 The topics of global seismology
  • 1.3.1 Seismic sources
  • 1.3.2 Earthquake sources involving shear faulting
  • 1.3.3 Seismic waves and seismograms
  • 1.3.4 Quantification of earthquakes
  • 1.3.5 Earthquake geographic distributions
  • 1.3.6 Global faulting patterns and earthquake models
  • 1.3.7 Earth’s interior: radial Earth layering
  • 1.3.8 Heterogeneous Earth models
  • 1.3.9 Summary
  • 1.4 Appendix: Great earthquakes, 1900-mid2020
  • 2 An overview of earthquake and seismic-wave mechanics
  • 2.1 Stress
  • 2.2 Strain and rotation
  • 2.3 Hooke’s law
  • 2.3.1 Elastic potential energy
  • 2.4 Earthquakes: conceptual models
  • 2.4.1 Elastic rebound
  • 2.4.2 Rock friction and frictional sliding
  • 2.4.3 Anelastic processes and postseismic relaxation
  • 2.4.4 Earthquake scaling relations & stress drop
  • 2.4.5 Stress drop, particle velocity, and rupture velocity
  • 2.5 Seismic-waves: the elastic equations of motion
  • 2.5.1 Harmonic motion
  • 2.5.2 Seismic-wave attenuation
  • Damped harmonic motion
  • The quality factor, Q
  • 2.5.3 Seismic wave attenuation in Earth
  • 2.6 Summary
  • 3 Earthquakes and plate tectonics
  • 3.1 Divergent boundaries
  • 3.2 Transcurrent boundaries
  • 3.3 Convergent boundaries
  • 3.3.1 Subduction zones
  • 3.3.2 Continental collisions
  • 3.4 Intraplate earthquakes
  • 3.5 Summary
  • 4 Earth motions & seismometry
  • 4.1 Introduction
  • 4.1.1 Seismic stations, networks, and arrays
  • 4.2 Earthquake-related ground motions
  • 4.3 Earth’s continuous background motion
  • 4.3.1 Ambient background motion power spectra
  • 4.3.2 Power spectral density and time-domain ground motions
  • 4.3.3 Horizontal and vertical ambient ground motions
  • 4.3.4 Diurnal variation in ambient ground motions
  • 4.3.5 Seasonal ambient ground motion variations
  • 4.3.6 Reducing ambient motions in seismic data
  • 4.4 Seismographic systems
  • 4.4.1 Inertial pendulum seismometers
  • 4.4.2 Electromagnetic seismographs
  • 4.4.3 Digital recording and force-feedback sensors
  • 4.5 Working with modern seismograms
  • 4.5.1 Digital seismic recording systems
  • 4.5.2 Removing instrument effects
  • 4.5.3 Poles and zeros
  • 4.5.4 Digital filters and signal decimation
  • 4.5.5 Removing an instrument response by deconvolution
  • 4.6 Seismometry’s future
  • 4.6.1 Seismometers everywhere
  • 4.7 Summary
  • 5 Seismogram interpretation and processing
  • 5.1 Terminology for seismograms
  • 5.2 Characteristics of body wave seismograms
  • 5.2.1 Local, regional, and upper mantle
  • 5.2.2 Teleseismic
  • 5.3 Surface-waves
  • 5.4 Travel-time curves
  • 5.5 Signal processing basics
  • 5.5.1 Time representation of seismic signals
  • 5.5.2 Frequency-domain representation of seismic signals
  • 5.5.3 Convolution
  • 5.6 Picking arrival times
  • 5.7 Summary
  • 6 An introduction to earthquake location
  • 6.1 Seismic arrival times
  • 6.1.1 Seismic travel-time curves
  • 6.2 Earthquake location with information from a single station
  • 6.2.1 Inferring seismic source properties from seismogram characteristics
  • 6.2.2 Inferring station-to-source distance & origin time using arrival times
  • 6.2.3 Inferring station-to-source direction using ground motion polarization
  • 6.3 Earthquake location with information from a seismic network
  • 6.3.1 Epicenter estimation with tS – tP measurements
  • 6.3.2 Origin-time estimation with Wadati diagrams
  • 6.3.3 Refining locations using arrival-time residuals
  • 6.4 Earthquake location as an inverse problem
  • 6.4.1 A least-squares optimal location estimate
  • 6.4.2 Halfspace arrival-time partial derivatives
  • A numerical location example
  • 6.5 Relative earthquake location methods
  • 6.5.1 Master-event methods
  • 6.5.2 Joint epicenter/hypocenter determination methods
  • 6.5.3 Double-difference methods
  • 6.6 Summary
  • 7 Earthquake size & descriptive earthquake statistics
  • 7.1 The energy in seismic waves
  • 7.2 Earthquake magnitude scales
  • 7.2.1 Local magnitude (ML)
  • 7.2.2 Body-wave magnitude
  • 7.2.3 Surface-wave magnitude (MS)
  • 7.2.4 Other magnitude scales
  • Regional magnitude, mb(Lg)
  • Seismic coda magnitude
  • 7.2.5 Magnitude saturation
  • 7.3 Seismic energy, magnitude, and moment magnitude
  • 7.4 Descriptive earthquake statistics
  • 7.4.1 The Gutenberg-Richter relationship
  • 7.4.2 Earthquake occurrence rates
  • 7.5 Patterns in earthquake sequences
  • 7.5.1 Foreshock patterns and earthquake nucleation
  • 7.5.2 Aftershock patterns and rupture area
  • 7.6 Earthquake catalogs
  • 7.6.1 Modern earthquake catalogs
  • 7.7 Summary
  • 8 Earthquake prediction, forecasting, & early warning
  • 8.1 The earthquake cycle
  • 8.2 Paleoseismology
  • 8.3 Earthquake prediction
  • 8.3.1 Long-term deformation and earthquake migration patterns
  • 8.3.2 Precursory phenomena
  • 8.4 Earthquake forecasting and hazard estimation
  • 8.5 Earthquake interactions and triggering
  • 8.5.1 Static triggering
  • 8.5.2 Dynamic triggering
  • 8.5.3 Other triggering
  • 8.6 Earthquake early warning
  • 8.7 Summary
  • 9 Tsunami and tsunami warning
  • 9.1 Tsunami excitation
  • 9.2 Tsunami propagation
  • 9.3 Tsunami observation and monitoring
  • 9.3.1 Onshore tsunami measurements
  • 9.4 Tsunami forecasting and warning
  • 9.5 Summary
  • 10 Earth structure
  • 10.1 Global Earth structure
  • 10.2 Crustal structure
  • 10.3 Upper-mantle structure
  • 10.3.1 Discontinuities and anisotropy
  • 10.4 Upper mantle heterogeneity
  • 10.5 Lower-mantle structure
  • 10.6 Structure of the core
  • 10.7 Summary
  • Part II Theoretical foundations
  • 11 Elasticity and seismic waves
  • 11.1 Deformation, deformation gradients, and strain
  • 11.1.1 Displacement gradients, strain, and rotation
  • Normal strains
  • Shear strains
  • Rigid-body rotation
  • 11.2 Stress
  • 11.2.1 The stress tensor
  • 11.2.2 Cauchy’s relation
  • Representative absolute stresses within Earth
  • 11.2.3 The conservation of linear momentum – the equations of equilibrium
  • 11.2.4 Conservation of angular momentum stress tensor symmetry
  • 11.2.5 Principal stresses
  • Tensors and tensor rotation
  • 11.3 The equation of motion
  • 11.3.1 Hooke’s law and linear elasticity
  • Isotropic elastic materials
  • Elastic moduli and parameters
  • 11.3.2 The equations of motion for linearly elastic materials
  • 11.4 Wave equations for P- and S-wave potentials
  • 11.4.1 The one-dimensional wave equation and solutions
  • General solutions of the 1D wave equation
  • Harmonic solutions of the 1D wave equation
  • An approximate solution for an inhomogeneous 1D medium
  • 11.4.2 Three-dimensional wave solutions
  • Plane-wave phase and wavenumber vectors
  • P- and S-wave displacements
  • Wave polarization on seismograms
  • 11.5 Seismic-wave speeds in Earth materials
  • 12 Body waves and ray theory – travel times
  • 12.1 Wavefronts and rays
  • 12.2 The Eikonal equations and seismic rays
  • 12.3 Travel times in media with depth-dependent properties
  • 12.3.1 The seismic ray parameter (horizontal slowness)
  • 12.3.2 Ray-path curvature
  • 12.3.3 Distance and travel-time formulas
  • 12.3.4 Travel-time curves for continuous media
  • 12.4 Travel times in spherical Earth models
  • 12.4.1 Travel-time expressions for spherical Earth models
  • 12.5 Travel times in layered Earth models
  • The layer-over-a-halfspace model
  • Hidden layers and blind zones
  • 12.6 Body-wave travel-time tables
  • 13 Body-waves and ray theory – amplitudes
  • 13.1 Geometric spreading in vertically varying media
  • 13.2 Geometric spreading in spherical Earth models
  • 13.2.1 Seismic-wave energy and amplitude
  • 13.3 Body-wave attenuation
  • 13.3.1 The standard-linear-solid attenuation model
  • 13.3.2 Estimating Q in the seismic band
  • 13.4 Seismic-wave reflection & transmission across geologic boundaries
  • 13.4.1 P-waves at a fluid-fluid boundary
  • Reflection variation with incidence angle / slowness
  • 13.4.2 SH-waves at a solid-solid boundary
  • 13.4.3 P- & S-waves at a solid-solid boundary
  • 13.4.4 P- & S-waves at a solid-fluid boundary
  • 13.4.5 P-S-wave reflection at a free surface
  • The free-surface receiver functions
  • 13.5 Body-wave energy flux factors
  • 14 Surface waves
  • 14.1 Halfspace Rayleigh waves
  • 14.1.1 Halfspace Rayleigh-wave speed
  • 14.1.2 Halfspace Rayleigh-wave displacements
  • A Poisson solid
  • Surface-wave geometric spreading
  • 14.2 Love waves in a layer over a halfspace
  • 14.3 Dispersion
  • 14.3.1 Discrete dispersion
  • 14.3.2 Continuous dispersion
  • 14.3.3 Calculating group velocity
  • 14.4 Dispersion on seismograms
  • 14.4.1 Measuring dispersion
  • Group-velocity estimation
  • Phase-velocity estimation
  • 14.4.2 Surface-wave dispersion and shallow Earth structure
  • 14.5 Surface waves on a sphere
  • 14.6 Surface-wave amplitude and attenuation
  • 14.6.1 Geometric spreading
  • 14.6.2 Attenuation
  • 15 Free oscillations
  • 15.1 A vibrating string
  • 15.2 A vibrating sphere
  • 15.3 Earth’s free oscillations
  • 15.3.1 Observing Earth’s natural frequencies of vibration
  • Mode splitting
  • Mode coupling
  • 15.4 Attenuation of free oscillations
  • 15.5 Building models of Earth’s interior using normal modes
  • 16 Seismic point-source models
  • 16.1 An ideal explosion
  • 16.2 Faulting sources
  • 16.2.1 Shear-faulting nomenclature
  • 16.3 Earthquake P-wave “first motions”
  • 16.4 Equivalent body forces for seismic sources
  • 16.4.1 Seismic point-force sources
  • 16.4.2 An ideal explosion
  • 16.4.3 An ideal earthquake
  • 16.4.3.1 Equivalent body force system non-uniqueness
  • 16.5 Seismic moment tensors
  • 16.5.1 Moment tensors and shear faulting
  • Shear-faulting moment tensors in principle-axis coordinates
  • Computing fault-normal and slip vectors from a moment tensor
  • Computing seismic moment from a moment tensor
  • 16.5.2 Non-double-couple seismic sources
  • Moment-tensor decompositions
  • 17 Seismic point-source radiation patterns
  • 17.1 Elastostatics
  • 17.1.1 Static displacement field due to a single force
  • 17.1.2 Static displacement field due to a force couple
  • 17.1.3 Static displacement field due to a double couple
  • 17.2 Elastodynamics
  • 17.2.1 Elastodynamic point-force displacements
  • 17.2.2 Elastodynamic single-couple displacements
  • 17.2.3 Moment-tensor radiation patterns
  • 17.2.4 Elastodynamic double-couple displacements
  • 17.3 Double-couple radiation patterns in geographic coordinates
  • 17.3.1 Body-waves
  • 17.3.2 Surface-waves
  • 17.4 Estimating faulting geometry
  • 17.4.1 P-wave first motion modeling
  • 18 Earthquake rupture and source time functions
  • 18.1 Rock fracture and fault rupture
  • Earthquake rupture dynamics
  • 18.1.1 Simple moment-rate function shapes
  • 18.2 The one-dimensional Haskell source model
  • 18.2.1 Rupture directivity
  • 18.3 Seismic source spectra
  • 18.3.1 Simple earthquake spectra models
  • 18.3.2 Earthquake self similarity
  • 18.4 Earthquake-slip heterogeneity
  • 18.5 Source-spectrum estimation
  • 18.5.1 Source-spectrum estimation
  • 18.6 Source-time function estimation
  • 18.6.1 Body waves
  • 18.6.2 Surface waves
  • Empirical Green’s functions
  • 19 Imaging seismic-sources
  • 19.1 Body waveform modeling – a point source
  • 19.1.1 Fundamental fault responses
  • 19.1.2 Teleseismic body-wave modeling
  • 19.1.3 Moment-tensor inversion
  • 19.1.4 Time-dependent moment-tensor inversion
  • 19.2 Surface-wave modeling for the seismic source
  • 19.3 Global centroid moment-tensor solutions
  • 19.4 Iterative sub-event identification
  • 19.5 Earthquake finite-fault models
  • 20 Imaging Earth’s interior
  • 20.1 Earth structure estimation using travel times
  • 20.1.1 Herglotz-Wiechert inversion
  • 20.1.2 Seismic traveltime tomography
  • 20.1.3 Amplitude attenuation tomography
  • 20.1.4 Surface-wave dispersion tomography
  • 20.2 Discrete geophysical inversion
  • 20.2.1 Surface-wave dispersion modeling
  • 20.3 Earth structure estimation using seismic amplitudes and waveforms
  • 20.3.1 P-wave receiver-function modeling
  • 20.4 Full seismogram inversion
  • Bibliography
  • Index
  • Back Cover
Show More

Additional information

Veldu vöru

Rafbók til eignar

Reviews

There are no reviews yet.

Be the first to review “Foundations of Modern Global Seismology”

Netfang þitt verður ekki birt. Nauðsynlegir reitir eru merktir *

Aðrar vörur

0
    0
    Karfan þín
    Karfan þín er tómAftur í búð