Description
Efnisyfirlit
- Cover
- Half Title
- Title Page
- Copyright Page
- Dedication
- Table of Contents
- Preface to the Second Edition
- Preface to the First Edition
- Acknowledgments
- Authors
- Chapter 1 Introduction
- 1.1 Symbols and Factors Used in This Book
- 1.1.1 Symbols Used in Power Systems
- 1.1.2 Factors and Symbols Used in AC Power Systems
- 1.1.3 Factors and Symbols Used in DC Power Systems
- 1.1.4 Factors and Symbols Used in Switching Power Systems
- 1.1.5 Other Factors and Symbols
- 1.1.5.1 Very Small Damping Time Constant
- 1.1.5.2 Small Damping Time Constant
- 1.1.5.3 Critical Damping Time Constant
- 1.1.5.4 Large Damping Time Constant
- 1.1.6 Fast Fourier Transform
- 1.1.6.1 Central Symmetrical Periodical Function
- 1.1.6.2 Axial (Mirror) Symmetrical Periodical Function
- 1.1.6.3 Nonperiodical Function
- 1.1.6.4 Useful Formulae and Data
- 1.1.6.5 Examples of Fast Fourier Transform Applications
- 1.2 AC/DC Rectifiers
- 1.2.1 Historic Problems
- 1.2.2 Updated Circuits
- 1.2.3 Power Factor Correction Methods
- 1.3 DC/DC Converters
- 1.3.1 Updated Converter
- 1.3.2 New Concepts and Mathematical Modeling
- 1.3.3 Power Rate Checking
- 1.4 DC/AC Inverters
- 1.4.1 Sorting Existing Inverters
- 1.4.2 Updated Circuits
- 1.4.3 Soft-Switching Methods
- 1.5 AC/AC Converters
- 1.6 AC/DC/AC and DC/AC/DC Converters
- Homework
- Bibliography
- Chapter 2 Uncontrolled AC/DC Rectifiers
- 2.1 Introduction
- 2.2 Single-Phase Half-Wave Rectifiers
- 2.2.1 R Load
- 2.2.2 R–L Load
- 2.2.2.1 Graphical Method
- 2.2.2.2 Iterative Method 1
- 2.2.2.3 Iterative Method 2
- 2.2.3 R–L Circuit with Freewheeling Diode
- 2.2.4 An R–L Load Circuit with a Back emf
- 2.2.4.1 Negligible Load–Circuit Inductance
- 2.2.5 Single-Phase Half-Wave Rectifier with a Capacitive Filter
- 2.3 Single-Phase Full-Wave Rectifiers
- 2.3.1 R Load
- 2.3.2 R–C Load
- 2.3.3 R–L Load
- 2.4 Three-Phase Half-Wave Rectifiers
- 2.4.1 R Load
- 2.4.2 R–L Load
- 2.5 Six-Phase Half-Wave Rectifiers
- 2.5.1 Six-Phase with a Neutral Line Circuit
- 2.5.2 Double Antistar with Balance-Choke Circuit
- 2.6 Three-Phase Full-Wave Rectifiers
- 2.7 Multiphase Full-Wave Rectifiers
- 2.7.1 Six-Phase Full-Wave Diode Rectifiers
- 2.7.2 Six-Phase Double-Bridge Full-Wave Diode Rectifiers
- 2.7.3 Six-Phase Double-Transformer Double-Bridge Full-Wave Diode Rectifiers
- 2.7.4 Six-Phase Triple-Transformer Double-Bridge Full-Wave Diode Rectifiers
- Homework
- Bibliography
- Chapter 3 Controlled AC/DC Rectifiers
- 3.1 Introduction
- 3.2 Single-Phase Half-Wave Controlled Rectifiers
- 3.2.1 R Load
- 3.2.2 R–L Load
- 3.2.3 R–L Load Plus Back emf Vc
- 3.3 Single-Phase Full-Wave Controlled Rectifiers
- 3.3.1 α > ϕ, Discontinuous Load Current
- 3.3.2 α < ϕ, Verge of Continuous Load Current
- 3.3.3 α < ϕ, Continuous Load Current
- 3.4 Three-Phase Half-Wave Controlled Rectifiers
- 3.4.1 R Load Circuit
- 3.4.2 R–L Load Circuit
- 3.5 Six-Phase Half-Wave Controlled Rectifiers
- 3.5.1 Six-Phase with a Neutral Line Circuit
- 3.5.2 Double Antistar with a Balance-Choke Circuit
- 3.6 Three-Phase Full-Wave Controlled Rectifiers
- 3.7 Multiphase Full-Wave Controlled Rectifiers
- 3.7.1 Effect of Line Inductance on Output Voltage (Overlap)
- Homework
- Bibliography
- Chapter 4 Implementing Power Factor Correction in AC/DC Converters
- 4.1 Introduction
- 4.2 DC/DC-Converterized Rectifiers
- 4.3 Pulse-Width Modulation Boost-Type Rectifiers
- 4.3.1 DC-Side Pulse-Width Modulation Boost-Type Rectifier
- 4.3.1.1 Constant-Frequency Control
- 4.3.1.2 Constant-Tolerance-Band (Hysteresis) Control
- 4.3.2 Source-Side Pulse-Width Modulation Boost-Type Rectifiers
- 4.4 Tapped-Transformer Converters
- 4.5 Single-Stage Power Factor Correction AC/DC Converters
- 4.5.1 Operating Principles
- 4.5.2 Mathematical Model Derivation
- 4.5.2.1 Averaged Model over One Switching Period Ts
- 4.5.2.2 Averaged Model over One Half Line Period TL
- 4.5.3 Simulation Results
- 4.5.4 Experimental Results
- 4.6 VIENNA Rectifiers
- 4.6.1 Circuit Analysis and Principle of Operation
- 4.6.2 Proposed Control Arithmetic
- 4.6.3 Block Diagram of the Proposed Controller for the VIENNA Rectifier
- 4.6.4 Converter Design and Simulation Results
- 4.6.5 Experimental Results
- Homework
- Bibliography
- Chapter 5 Ordinary DC/DC Converters
- 5.1 Introduction
- 5.2 Fundamental Converters
- 5.2.1 Buck Converter
- 5.2.1.1 Voltage Relations
- 5.2.1.2 Circuit Currents
- 5.2.1.3 Continuous Current Condition (Continuous Conduction Mode)
- 5.2.1.4 Capacitor Voltage Ripple
- 5.2.2 Boost Converter
- 5.2.2.1 Voltage Relations
- 5.2.2.2 Circuit Currents
- 5.2.2.3 Continuous Current Condition
- 5.2.2.4 Output Voltage Ripple
- 5.2.3 Buck–Boost Converter
- 5.2.3.1 Voltage and Current Relations
- 5.2.3.2 CCM Operation and Circuit Currents
- 5.2.4 Positive Output Buck–Boost Converter
- 5.3 P/O Buck-and-Boost Converter
- 5.3.1 Buck Operation Mode
- 5.3.2 Boost Operation Mode
- 5.3.3 Buck-and-Boost Operation Mode
- 5.3.4 Operation Control
- 5.4 Transformer-Type Converters
- 5.4.1 Forward Converter
- 5.4.1.1 Fundamental Forward Converter
- 5.4.1.2 Forward Converter with Tertiary Winding
- 5.4.1.3 Switch Mode Power Supplies with Multiple Outputs
- 5.4.2 Fly-Back Converter
- 5.4.3 Push–Pull Converter
- 5.4.4 Half-Bridge Converter
- 5.4.5 Bridge Converter
- 5.4.6 Zeta Converter
- 5.5 Developed Converters
- 5.5.1 P/O Luo-Converter (Elementary Circuit)
- 5.5.2 N/O Luo-Converter (Elementary Circuit)
- 5.5.3 D/O Luo-Converter (Elementary Circuit)
- 5.5.4 Cúk-Converter
- 5.5.5 Single-Ended Primary Inductance Converter
- 5.6 Tapped-Inductor Converters
- Homework
- Bibliography
- Chapter 6 Voltage Lift Converters
- 6.1 Introduction
- 6.2 Seven Self-Lift Converters
- 6.2.1 Self-Lift Cúk-Converter
- 6.2.1.1 Continuous Conduction Mode
- 6.2.1.2 Discontinuous Conduction Mode
- 6.2.2 Self-Lift P/O Luo-Converter
- 6.2.2.1 Continuous Conduction Mode
- 6.2.2.2 Discontinuous Conduction Mode
- 6.2.3 Reverse Self-Lift P/O Luo-Converter
- 6.2.3.1 Continuous Conduction Mode
- 6.2.3.2 Discontinuous Conduction Mode
- 6.2.4 Self-Lift N/O Luo-Converter
- 6.2.4.1 Continuous Conduction Mode
- 6.2.4.2 Discontinuous Conduction Mode
- 6.2.5 Reverse Self-Lift N/O Luo-Converter
- 6.2.5.1 Continuous Conduction Mode
- 6.2.5.2 Discontinuous Conduction Mode
- 6.2.6 Self-Lift SEPIC
- 6.2.6.1 Continuous Conduction Mode
- 6.2.6.2 Discontinuous Conduction Mode
- 6.2.7 Enhanced Self-Lift P/O Luo-Converter
- 6.3 P/O Luo-Converters
- 6.3.1 Relift Circuit
- 6.3.1.1 Variations of Currents and Voltages
- 6.3.2 Triple-Lift Circuit
- 6.3.3 Quadruple-Lift Circuit
- 6.3.4 Summary
- 6.4 N/O Luo-Converters
- 6.4.1 Relift Circuit
- 6.4.2 N/O Triple-Lift Circuit
- 6.4.3 N/O Quadruple-Lift Circuit
- 6.4.4 Summary
- 6.5 Modified P/O Luo-Converters
- 6.5.1 Self-Lift Circuit
- 6.5.2 Relift Circuit
- 6.5.3 Multiple-Lift Circuit
- 6.6 D/O Luo-Converters
- 6.6.1 Self-Lift Circuit
- 6.6.1.1 Positive Conversion Path
- 6.6.1.2 Negative Conversion Path
- 6.6.1.3 Discontinuous Conduction Mode
- 6.6.2 Relift Circuit
- 6.6.2.1 Positive Conversion Path
- 6.6.2.2 Negative Conversion Path
- 6.6.2.3 Discontinuous Conduction Mode
- 6.6.3 Triple-Lift Circuit
- 6.6.3.1 Positive Conversion Path
- 6.6.3.2 Negative Conversion Path
- 6.6.3.3 Discontinuous Mode
- 6.6.4 Quadruple-Lift Circuit
- 6.6.4.1 Positive Conversion Path
- 6.6.4.2 Negative Conversion Path
- 6.6.4.3 Discontinuous Conduction Mode
- 6.6.5 Summary
- 6.6.5.1 Positive Conversion Path
- 6.6.5.2 Negative Conversion Path
- 6.6.5.3 Common Parameters
- 6.7 VL Cúk-Converters
- 6.7.1 Elementary Self-Lift Cúk Circuit
- 6.7.2 Developed Self-Lift Cúk Circuit
- 6.7.3 Relift Cúk Circuit
- 6.7.4 Multiple-Lift Cúk Circuit
- 6.7.5 Simulation and Experimental Verification of an Elementary and a Developed Self-Lift Circuit
- 6.8 VL SEPICs
- 6.8.1 Self-Lift SEPIC
- 6.8.2 Relift SEPIC
- 6.8.3 Multiple-Lift SEPICs
- 6.8.4 Simulation and Experimental Results of a Relift SEPIC
- 6.9 Other D/O Voltage-Lift Converters
- 6.9.1 Elementary Circuit
- 6.9.2 Self-Lift D/O Circuit
- 6.9.3 Enhanced Series D/O Circuits
- 6.9.4 Simulation and Experimental Verification of an Enhanced D/O Self-Lift Circuit
- 6.10 SC Converters
- 6.10.1 One-Stage SC Buck Converter
- 6.10.1.1 Operation Analysis
- 6.10.1.2 Simulation and Experimental Results
- 6.10.2 Two-Stage SC Buck–Boost Converter
- 6.10.2.1 Operation Analysis
- 6.10.2.2 Simulation and Experimental Results
- 6.10.3 Three-Stage SC P/O Luo-Converter
- 6.10.3.1 Operation Analysis
- 6.10.3.2 Simulation and Experimental Results
- 6.10.4 Three-Stage SC N/O Luo-Converter
- 6.10.4.1 Operation Analysis
- 6.10.4.2 Simulation and Experimental Results
- 6.10.5 Discussion
- 6.10.5.1 Voltage Drop across Switched Capacitors
- 6.10.5.2 Necessity of the Voltage Drop across Switched Capacitors and Energy Transfer
- 6.10.5.3 Inrush Input Current
- 6.10.5.4 Power Switch-On Process
- 6.10.5.5 Suppression of the Inrush and Surge Input Currents
- Homework
- Bibliography
- Chapter 7 Superlift Converters and Ultralift Converter
- 7.1 Introduction
- 7.2 P/O SL Luo-Converters
- 7.2.1 Main Series
- 7.2.1.1 Elementary Circuit
- 7.2.1.2 Relift Circuit
- 7.2.1.3 Triple-Lift Circuit
- 7.2.1.4 Higher Order Lift Circuit
- 7.2.2 Additional Series
- 7.2.2.1 Elementary Additional Circuit
- 7.2.2.2 Relift Additional Circuit
- 7.2.2.3 Triple-Lift Additional Circuit
- 7.2.2.4 Higher Order Lift Additional Circuit
- 7.2.3 Enhanced Series
- 7.2.3.1 Elementary Enhanced Circuit
- 7.2.3.2 Relift Enhanced Circuit
- 7.2.3.3 Triple-Lift Enhanced Circuit
- 7.2.3.4 Higher Order Lift Enhanced Circuit
- 7.2.4 Re-Enhanced Series
- 7.2.4.1 Elementary Re-Enhanced Circuit
- 7.2.4.2 Relift Re-Enhanced Circuit
- 7.2.4.3 Triple-Lift Re-Enhanced Circuit
- 7.2.4.4 Higher Order Lift Re-Enhanced Circuit
- 7.2.5 Multiple-Enhanced Series
- 7.2.5.1 Elementary Multiple-Enhanced Circuit
- 7.2.5.2 Relift Multiple-Enhanced Circuit
- 7.2.5.3 Triple-Lift Multiple-Enhanced Circuit
- 7.2.5.4 Higher Order Lift Multiple-Enhanced Circuit
- 7.2.6 Summary of P/O SL Luo-Converters
- 7.3 N/O SL Luo-Converters
- 7.3.1 Main Series
- 7.3.1.1 N/O Elementary Circuit
- 7.3.1.2 N/O Relift Circuit
- 7.3.1.3 N/O Triple-Lift Circuit
- 7.3.1.4 N/O Higher Order Lift Circuit
- 7.3.2 N/O Additional Series
- 7.3.2.1 N/O Elementary Additional Circuit
- 7.3.2.2 N/O Relift Additional Circuit
- 7.3.2.3 Triple-Lift Additional Circuit
- 7.3.2.4 N/O Higher Order Lift Additional Circuit
- 7.3.3 Enhanced Series
- 7.3.3.1 N/O Elementary Enhanced Circuit
- 7.3.3.2 N/O Relift Enhanced Circuit
- 7.3.3.3 N/O Triple-Lift Enhanced Circuit
- 7.3.3.4 N/O Higher Order Lift Enhanced Circuit
- 7.3.4 Re-Enhanced Series
- 7.3.4.1 N/O Elementary Re-Enhanced Circuit
- 7.3.4.2 N/O Relift Re-Enhanced Circuit
- 7.3.4.3 N/O Triple-Lift Re-Enhanced Circuit
- 7.3.4.4 N/O Higher Order Lift Re-Enhanced Circuit
- 7.3.5 N/O Multiple-Enhanced Series
- 7.3.5.1 N/O Elementary Multiple-Enhanced Circuit
- 7.3.5.2 N/O Relift Multiple-Enhanced Circuit
- 7.3.5.3 N/O Triple-Lift Multiple-Enhanced Circuit
- 7.3.5.4 N/O Higher Order Lift Multiple-Enhanced Circuit
- 7.3.6 Summary of N/O SL Luo-Converters
- 7.4 P/O Cascaded Boost-Converters
- 7.4.1 Main Series
- 7.4.1.1 Elementary Boost Circuit
- 7.4.1.2 Two-Stage Boost Circuit
- 7.4.1.3 Three-Stage Boost Circuit
- 7.4.1.4 Higher Stage Boost Circuit
- 7.4.2 Additional Series
- 7.4.2.1 Elementary Boost Additional (Double) Circuit
- 7.4.2.2 Two-Stage Boost Additional Circuit
- 7.4.2.3 Three-Stage Boost Additional Circuit
- 7.4.2.4 Higher Stage Boost Additional Circuit
- 7.4.3 Double Series
- 7.4.3.1 Elementary Double Boost Circuit
- 7.4.3.2 Two-Stage Double Boost Circuit
- 7.4.3.3 Three-Stage Double Boost Circuit
- 7.4.3.4 Higher Stage Double Boost Circuit
- 7.4.4 Triple Series
- 7.4.4.1 Elementary Triple Boost Circuit
- 7.4.4.2 Two-Stage Triple Boost Circuit
- 7.4.4.3 Three-Stage Triple Boost Circuit
- 7.4.4.4 Higher Stage Triple Boost Circuit
- 7.4.5 Multiple Series
- 7.4.5.1 Elementary Multiple Boost Circuit
- 7.4.5.2 Two-Stage Multiple Boost Circuit
- 7.4.5.3 Three-Stage Multiple Boost Circuit
- 7.4.5.4 Higher Stage Multiple Boost Circuit
- 7.4.6 Summary of P/O Cascaded Boost Converters
- 7.5 N/O Cascaded Boost Converters
- 7.5.1 Main Series
- 7.5.1.1 N/O Elementary Boost Circuit
- 7.5.1.2 N/O Two-Stage Boost Circuit
- 7.5.1.3 N/O Three-Stage Boost Circuit
- 7.5.1.4 N/O Higher Stage Boost Circuit
- 7.5.2 N/O Additional Series
- 7.5.2.1 N/O Elementary Additional Boost Circuit
- 7.5.2.2 N/O Two-Stage Additional Boost Circuit
- 7.5.2.3 N/O Three-Stage Additional Boost Circuit
- 7.5.2.4 N/O Higher Stage Additional Boost Circuit
- 7.5.3 Double Series
- 7.5.3.1 N/O Elementary Double Boost Circuit
- 7.5.3.2 N/O Two-Stage Double Boost Circuit
- 7.5.3.3 N/O Three-Stage Double Boost Circuit
- 7.5.3.4 N/O Higher Stage Double Boost Circuit
- 7.5.4 Triple Series
- 7.5.4.1 N/O Elementary Triple Boost Circuit
- 7.5.4.2 N/O Two-Stage Triple Boost Circuit
- 7.5.4.3 N/O Three-Stage Triple Boost Circuit
- 7.5.4.4 N/O Higher Stage Triple Boost Circuit
- 7.5.5 Multiple Series
- 7.5.5.1 N/O Elementary Multiple Boost Circuit
- 7.5.5.2 N/O Two-Stage Multiple Boost Circuit
- 7.5.5.3 N/O Three-Stage Multiple Boost Circuit
- 7.5.5.4 N/O Higher Stage Multiple Boost Circuit
- 7.5.6 Summary of N/O Cascaded Boost Converters
- 7.6 UL Luo-Converter
- 7.6.1 Operation of the UL Luo-Converter
- 7.6.1.1 Continuous Conduction Mode
- 7.6.1.2 Discontinuous Conduction Mode
- 7.6.2 Instantaneous Values
- 7.6.2.1 Continuous Conduction Mode
- 7.6.2.2 Discontinuous Conduction Mode
- 7.6.3 Comparison of the Gain to Other Converters’ Gains
- 7.6.4 Simulation Results
- 7.6.5 Experimental Results
- 7.6.6 Summary
- Homework
- Bibliography
- Chapter 8 Pulse-Width-Modulated DC/AC Inverters
- 8.1 Introduction
- 8.2 Parameters Used in PWM Operations
- 8.2.1 Modulation Ratios
- 8.2.1.1 Linear Range (ma ≤ 1.0)
- 8.2.1.2 Overmodulation (1.0 < ma ≤ 1.27)
- 8.2.1.3 Square Wave (Sufficiently Large ma > 1.27)
- 8.2.1.4 Small mf (mf ≤ 21)
- 8.2.1.5 Large mf (mf > 21)
- 8.2.2 Harmonic Parameters
- 8.3 Typical PWM Inverters
- 8.3.1 Voltage Source Inverter
- 8.3.2 Current Source Inverter
- 8.3.3 Impedance Source Inverter
- 8.3.4 Circuits of DC/AC Inverters
- 8.4 Single-Phase Voltage Source Inverter
- 8.4.1 Single-Phase Half-Bridge Voltage Source Inverter
- 8.4.2 Single-Phase Full-Bridge Voltage Source Inverter
- 8.5 Three-Phase Full-Bridge Voltage Source Inverter
- 8.6 Three-Phase Full-Bridge Current Source Inverter
- 8.7 Multistage PWM Inverter
- 8.7.1 Unipolar PWM Voltage Source Inverter
- 8.7.2 Multicell PWM Voltage Source Inverter
- 8.7.3 Multilevel PWM Inverter
- 8.8 Impedance-Source Inverters
- 8.8.1 Comparison between Voltage Source Inverter and Current Source Inverter
- 8.8.2 Equivalent Circuit and Operation
- 8.8.3 Circuit Analysis and Calculations
- 8.9 Extended Boost Impedance Source Inverters
- 8.9.1 Introduction to Impedance Source Inverter and Basic Topologies
- 8.9.2 Extended Boost Quasi–Impedance Source Inverter Topologies
- 8.9.2.1 Diode-Assisted Extended Boost Quasi–Impedance Source Inverter Topologies
- 8.9.2.2 Capacitor-Assisted Extended Boost Quasi–Impedance Source Inverter Topologies
- 8.9.3 Simulation Results
- Homework
- Bibliography
- Chapter 9 Multilevel and Soft-Switching DC/AC Inverters
- 9.1 Introduction
- 9.2 Diode-Clamped Multilevel Inverters
- 9.3 Capacitor-Clamped Multilevel Inverters (Flying Capacitor Inverters)
- 9.4 Multilevel Inverters Using H-Bridge Converters
- 9.4.1 Cascaded Equal-Voltage Multilevel Inverters
- 9.4.2 Binary Hybrid Multilevel Inverter
- 9.4.3 Quasilinear Multilevel Inverter
- 9.4.4 Trinary Hybrid Multilevel Inverter
- 9.5 Investigation of Trinary Hybrid Multilevel Inverter
- 9.5.1 Topology and Operation
- 9.5.2 Proof That the Trinary Hybrid Multilevel Inverter Has the Greatest Number of Output Voltage Levels
- 9.5.2.1 Theoretical Proof
- 9.5.2.2 Comparison of Various Kinds of Multilevel Inverters
- 9.5.2.3 Modulation Strategies for Trinary Hybrid Multilevel Inverter
- 9.5.2.4 Regenerative Power
- 9.5.3 Experimental Results
- 9.5.3.1 Experiment to Verify the Step Modulation and the Virtual Stage Modulation
- 9.5.3.2 Experiment to Verify the New Method of Eliminating the Regenerative Power
- 9.5.4 Trinary Hybrid 81-Level Multilevel Inverters
- 9.5.4.1 Space Vector Modulation
- 9.5.4.2 DC Sources of H-Bridges
- 9.5.4.3 Motor Controller
- 9.5.4.4 Simulation and Experimental Results
- 9.6 Other Kinds of Multilevel Inverters
- 9.6.1 Generalized Multilevel Inverters
- 9.6.2 Mixed-Level Multilevel Inverter Topologies
- 9.6.3 Multilevel Inverters by Connection of Three-Phase Two-Level Inverters
- 9.7 Soft-Switching Multilevel Inverters
- 9.7.1 Notched DC-Link Inverters for Brushless DC Motor Drive
- 9.7.1.1 Resonant Circuit
- 9.7.1.2 Design Consideration
- 9.7.1.3 Control Scheme
- 9.7.1.4 Simulation and Experimental Results
- 9.7.2 Resonant Pole Inverter
- 9.7.2.1 Topology of the Resonant Pole Inverter
- 9.7.2.2 Operation Principle
- 9.7.2.3 Design Considerations
- 9.7.2.4 Simulation and Experimental Results
- 9.7.3 Transformer-Based Resonant DC-Link Inverter
- 9.7.3.1 Resonant Circuit
- 9.7.3.2 Design Consideration
- 9.7.3.3 Control Scheme
- 9.7.3.4 Simulation and Experimental Results
- Homework
- Bibliography
- Chapter 10 Best Switching Angles to Obtain Lowest Total Harmonic Distortion for Multilevel DC/AC Inverters
- 10.1 Introduction
- 10.2 Methods for Determination of Switching Angle
- 10.2.1 Main Switching Angles
- 10.2.2 Equal-Phase Method
- 10.2.3 Half-Equal-Phase Method
- 10.2.4 Half-Height Method
- 10.2.5 Feed-Forward Method
- 10.2.6 Comparison of the Methods in Each Level
- 10.2.7 Comparison of the Various Levels for Each Method
- 10.2.8 Total Harmonic Distortion of Using Different Methods
- 10.3 Best Switching Angles
- 10.3.1 Using MATLAB to Obtain the Best Switching Angles
- 10.3.2 Analysis of the Results of Best Switching Angles Calculation
- 10.3.3 Output Voltage Waveform for Multilevel Inverters
- Homework
- Bibliography
- Chapter 11 Traditional AC/AC Converters
- 11.1 Introduction
- 11.2 Single-Phase AC/AC Voltage-Regulation Converters
- 11.2.1 Phase-Controlled Single-Phase AC/AC Voltage Controller
- 11.2.1.1 Operation with R Load
- 11.2.1.2 Operation with RL Load
- 11.2.1.3 Gating Signal Requirements
- 11.2.1.4 Operation with α < ϕ
- 11.2.1.5 Power Factor and Harmonics
- 11.2.2 Single-Phase AC/AC Voltage Controller with On/Off Control
- 11.2.2.1 Integral Cycle Control
- 11.2.2.2 PWM AC Chopper
- 11.3 Three-Phase AC/AC Voltage-Regulation Converters
- 11.3.1 Phase-Controlled Three-Phase AC Voltage Controllers
- 11.3.2 Fully Controlled Three-Phase Three-Wire AC Voltage Controller
- 11.3.2.1 Star-Connected Load with Isolated Neutral
- 11.3.2.2 RL Load
- 11.3.2.3 Delta-Connected R Load
- 11.4 Cycloconverters
- 11.4.1 Single-Phase/Single-Phase (Single-Phase Input to Single-Phase Output) Cycloconverters
- 11.4.1.1 Operation with R Load
- 11.4.1.2 Operation with RL Load
- 11.4.2 Three-Phase Cycloconverters
- 11.4.2.1 Three-Phase Three-Pulse Cycloconverter
- 11.4.2.2 Three-Phase 6-Pulse and 12-Pulse Cycloconverters
- 11.4.3 Cycloconverter Control Scheme
- 11.4.3.1 Control Circuit Block Diagram
- 11.4.3.2 Improved Control Schemes
- 11.4.4 Cycloconverter Harmonics and Input Current Waveform
- 11.4.4.1 Circulating-Current-Free Operations
- 11.4.4.2 Circulating-Current Operation
- 11.4.4.3 Other Harmonic Distortion Terms
- 11.4.4.4 Input Current Waveform
- 11.4.5 Cycloconverter Input Displacement/Power Factor
- 11.4.6 Effect of Source Impedance
- 11.4.7 Simulation Analysis of Cycloconverter Performance
- 11.4.8 Forced-Commutated Cycloconverter
- 11.5 Matrix Converters
- 11.5.1 Operation and Control Methods of the Matrix Converter
- 11.5.1.1 Venturini Method
- 11.5.1.2 The Space Vector Modulation Method
- 11.5.1.3 Control Implementation and Comparison of the Two Methods
- 11.5.2 Commutation and Protection Issues in a Matrix Converter
- Homework
- Bibliography
- Chapter 12 Improved AC/AC Converters
- 12.1 DC-Modulated Single-Phase Single-Stage AC/AC Converters
- 12.1.1 Bidirectional Exclusive Switches SM–Ss
- 12.1.2 Mathematical Modeling of DC/DC Converters
- 12.1.3 DC-Modulated Single-Stage Buck-Type AC/AC Converter
- 12.1.3.1 Positive Input Voltage Half-Cycle
- 12.1.3.2 Negative Input Voltage Half-Cycle
- 12.1.3.3 Whole-Cycle Operation
- 12.1.3.4 Simulation and Experimental Results
- 12.1.4 DC-Modulated Single-Stage Boost-Type AC/AC Converter
- 12.1.4.1 Positive Input Voltage Half-Cycle
- 12.1.4.2 Negative Input Voltage Half-Cycle
- 12.1.4.3 Whole-Cycle Operation
- 12.1.4.4 Simulation and Experimental Results
- 12.1.5 DC-Modulated Single-Stage Buck–Boost-Type AC/AC Converter
- 12.1.5.1 Positive Input Voltage Half-Cycle
- 12.1.5.2 Negative Input Voltage Half-Cycle
- 12.1.5.3 Whole-Cycle Operation
- 12.1.5.4 Simulation and Experimental Results
- 12.2 Other Types of DC-Modulated AC/AC Converters
- 12.2.1 DC-Modulated P/O Luo-Converter-Type AC/AC Converter
- 12.2.2 DC-Modulated Two-Stage Boost-Type AC/AC Converter
- 12.3 DC-Modulated Multiphase AC/AC Converters
- 12.3.1 DC-Modulated Three-Phase Buck-Type AC/AC Converter
- 12.3.2 DC-Modulated Three-Phase Boost-Type AC/AC Converter
- 12.3.3 DC-Modulated Three-Phase Buck–Boost-Type AC/AC Converter
- 12.4 Subenvelope Modulation Method to Reduce the Total Harmonic Distortion of AC/AC Matrix Converters
- 12.4.1 Subenvelope Modulation Method
- 12.4.1.1 Measure the Input Instantaneous Voltage
- 12.4.1.2 Modulation Algorithm
- 12.4.1.3 Improve Voltage Ratio
- 12.4.2 24-Switch Matrix Converter
- 12.4.3 Current Commutation
- 12.4.3.1 Current Commutation between Two Input Phases
- 12.4.3.2 Current Commutation-Related Three Input Phases
- 12.4.4 Simulation and Experimental Results
- 12.4.4.1 Simulation Results
- 12.4.4.2 Experimental Results
- Homework
- Bibliography
- Chapter 13 AC/DC/AC and DC/AC/DC Converters
- 13.1 Introduction
- 13.2 AC/DC/AC Converters Used in Wind Turbine Systems
- 13.2.1 Review of Traditional AC/AC Converters
- 13.2.2 New AC/DC/AC Converters
- 13.2.2.1 AC/DC/AC Boost-Type Converters
- 13.2.2.2 Three-Level Diode-Clamped AC/DC/AC Converter
- 13.2.3 Two-Level AC/DC/AC ZSI
- 13.2.4 Three-Level Diode-Clamped AC/DC/AC ZSI
- 13.2.5 Linking a Wind Turbine System to a Utility Network
- 13.3 DC/AC/DC Converters
- 13.3.1 Review of Traditional DC/DC Converters
- 13.3.2 Chopper-Type DC/AC/DC Converters
- 13.3.3 Switched-Capacitor DC/AC/DC Converters
- 13.3.3.1 Single-Stage Switched-Capacitor DC/AC/DC Converter
- 13.3.3.2 Three-Stage Switched-Capacitor DC/AC/DC Converter
- 13.3.3.3 Four-Stage Switched-Capacitor DC/AC/DC Converter
- Homework
- Bibliography
- Index
Reviews
There are no reviews yet.