Power Electronics

Höfundur Fang Lin Luo; Hong Ye

Útgefandi Taylor & Francis

Snið ePub

Print ISBN 9780367656157

Útgáfa 2

Útgáfuár 2018

8.990 kr.

Description

Efnisyfirlit

  • Cover
  • Half Title
  • Title Page
  • Copyright Page
  • Dedication
  • Table of Contents
  • Preface to the Second Edition
  • Preface to the First Edition
  • Acknowledgments
  • Authors
  • Chapter 1 Introduction
  • 1.1 Symbols and Factors Used in This Book
  • 1.1.1 Symbols Used in Power Systems
  • 1.1.2 Factors and Symbols Used in AC Power Systems
  • 1.1.3 Factors and Symbols Used in DC Power Systems
  • 1.1.4 Factors and Symbols Used in Switching Power Systems
  • 1.1.5 Other Factors and Symbols
  • 1.1.5.1 Very Small Damping Time Constant
  • 1.1.5.2 Small Damping Time Constant
  • 1.1.5.3 Critical Damping Time Constant
  • 1.1.5.4 Large Damping Time Constant
  • 1.1.6 Fast Fourier Transform
  • 1.1.6.1 Central Symmetrical Periodical Function
  • 1.1.6.2 Axial (Mirror) Symmetrical Periodical Function
  • 1.1.6.3 Nonperiodical Function
  • 1.1.6.4 Useful Formulae and Data
  • 1.1.6.5 Examples of Fast Fourier Transform Applications
  • 1.2 AC/DC Rectifiers
  • 1.2.1 Historic Problems
  • 1.2.2 Updated Circuits
  • 1.2.3 Power Factor Correction Methods
  • 1.3 DC/DC Converters
  • 1.3.1 Updated Converter
  • 1.3.2 New Concepts and Mathematical Modeling
  • 1.3.3 Power Rate Checking
  • 1.4 DC/AC Inverters
  • 1.4.1 Sorting Existing Inverters
  • 1.4.2 Updated Circuits
  • 1.4.3 Soft-Switching Methods
  • 1.5 AC/AC Converters
  • 1.6 AC/DC/AC and DC/AC/DC Converters
  • Homework
  • Bibliography
  • Chapter 2 Uncontrolled AC/DC Rectifiers
  • 2.1 Introduction
  • 2.2 Single-Phase Half-Wave Rectifiers
  • 2.2.1 R Load
  • 2.2.2 R–L Load
  • 2.2.2.1 Graphical Method
  • 2.2.2.2 Iterative Method 1
  • 2.2.2.3 Iterative Method 2
  • 2.2.3 R–L Circuit with Freewheeling Diode
  • 2.2.4 An R–L Load Circuit with a Back emf
  • 2.2.4.1 Negligible Load–Circuit Inductance
  • 2.2.5 Single-Phase Half-Wave Rectifier with a Capacitive Filter
  • 2.3 Single-Phase Full-Wave Rectifiers
  • 2.3.1 R Load
  • 2.3.2 R–C Load
  • 2.3.3 R–L Load
  • 2.4 Three-Phase Half-Wave Rectifiers
  • 2.4.1 R Load
  • 2.4.2 R–L Load
  • 2.5 Six-Phase Half-Wave Rectifiers
  • 2.5.1 Six-Phase with a Neutral Line Circuit
  • 2.5.2 Double Antistar with Balance-Choke Circuit
  • 2.6 Three-Phase Full-Wave Rectifiers
  • 2.7 Multiphase Full-Wave Rectifiers
  • 2.7.1 Six-Phase Full-Wave Diode Rectifiers
  • 2.7.2 Six-Phase Double-Bridge Full-Wave Diode Rectifiers
  • 2.7.3 Six-Phase Double-Transformer Double-Bridge Full-Wave Diode Rectifiers
  • 2.7.4 Six-Phase Triple-Transformer Double-Bridge Full-Wave Diode Rectifiers
  • Homework
  • Bibliography
  • Chapter 3 Controlled AC/DC Rectifiers
  • 3.1 Introduction
  • 3.2 Single-Phase Half-Wave Controlled Rectifiers
  • 3.2.1 R Load
  • 3.2.2 R–L Load
  • 3.2.3 R–L Load Plus Back emf Vc
  • 3.3 Single-Phase Full-Wave Controlled Rectifiers
  • 3.3.1 α > ϕ, Discontinuous Load Current
  • 3.3.2 α < ϕ, Verge of Continuous Load Current
  • 3.3.3 α < ϕ, Continuous Load Current
  • 3.4 Three-Phase Half-Wave Controlled Rectifiers
  • 3.4.1 R Load Circuit
  • 3.4.2 R–L Load Circuit
  • 3.5 Six-Phase Half-Wave Controlled Rectifiers
  • 3.5.1 Six-Phase with a Neutral Line Circuit
  • 3.5.2 Double Antistar with a Balance-Choke Circuit
  • 3.6 Three-Phase Full-Wave Controlled Rectifiers
  • 3.7 Multiphase Full-Wave Controlled Rectifiers
  • 3.7.1 Effect of Line Inductance on Output Voltage (Overlap)
  • Homework
  • Bibliography
  • Chapter 4 Implementing Power Factor Correction in AC/DC Converters
  • 4.1 Introduction
  • 4.2 DC/DC-Converterized Rectifiers
  • 4.3 Pulse-Width Modulation Boost-Type Rectifiers
  • 4.3.1 DC-Side Pulse-Width Modulation Boost-Type Rectifier
  • 4.3.1.1 Constant-Frequency Control
  • 4.3.1.2 Constant-Tolerance-Band (Hysteresis) Control
  • 4.3.2 Source-Side Pulse-Width Modulation Boost-Type Rectifiers
  • 4.4 Tapped-Transformer Converters
  • 4.5 Single-Stage Power Factor Correction AC/DC Converters
  • 4.5.1 Operating Principles
  • 4.5.2 Mathematical Model Derivation
  • 4.5.2.1 Averaged Model over One Switching Period Ts
  • 4.5.2.2 Averaged Model over One Half Line Period TL
  • 4.5.3 Simulation Results
  • 4.5.4 Experimental Results
  • 4.6 VIENNA Rectifiers
  • 4.6.1 Circuit Analysis and Principle of Operation
  • 4.6.2 Proposed Control Arithmetic
  • 4.6.3 Block Diagram of the Proposed Controller for the VIENNA Rectifier
  • 4.6.4 Converter Design and Simulation Results
  • 4.6.5 Experimental Results
  • Homework
  • Bibliography
  • Chapter 5 Ordinary DC/DC Converters
  • 5.1 Introduction
  • 5.2 Fundamental Converters
  • 5.2.1 Buck Converter
  • 5.2.1.1 Voltage Relations
  • 5.2.1.2 Circuit Currents
  • 5.2.1.3 Continuous Current Condition (Continuous Conduction Mode)
  • 5.2.1.4 Capacitor Voltage Ripple
  • 5.2.2 Boost Converter
  • 5.2.2.1 Voltage Relations
  • 5.2.2.2 Circuit Currents
  • 5.2.2.3 Continuous Current Condition
  • 5.2.2.4 Output Voltage Ripple
  • 5.2.3 Buck–Boost Converter
  • 5.2.3.1 Voltage and Current Relations
  • 5.2.3.2 CCM Operation and Circuit Currents
  • 5.2.4 Positive Output Buck–Boost Converter
  • 5.3 P/O Buck-and-Boost Converter
  • 5.3.1 Buck Operation Mode
  • 5.3.2 Boost Operation Mode
  • 5.3.3 Buck-and-Boost Operation Mode
  • 5.3.4 Operation Control
  • 5.4 Transformer-Type Converters
  • 5.4.1 Forward Converter
  • 5.4.1.1 Fundamental Forward Converter
  • 5.4.1.2 Forward Converter with Tertiary Winding
  • 5.4.1.3 Switch Mode Power Supplies with Multiple Outputs
  • 5.4.2 Fly-Back Converter
  • 5.4.3 Push–Pull Converter
  • 5.4.4 Half-Bridge Converter
  • 5.4.5 Bridge Converter
  • 5.4.6 Zeta Converter
  • 5.5 Developed Converters
  • 5.5.1 P/O Luo-Converter (Elementary Circuit)
  • 5.5.2 N/O Luo-Converter (Elementary Circuit)
  • 5.5.3 D/O Luo-Converter (Elementary Circuit)
  • 5.5.4 Cúk-Converter
  • 5.5.5 Single-Ended Primary Inductance Converter
  • 5.6 Tapped-Inductor Converters
  • Homework
  • Bibliography
  • Chapter 6 Voltage Lift Converters
  • 6.1 Introduction
  • 6.2 Seven Self-Lift Converters
  • 6.2.1 Self-Lift Cúk-Converter
  • 6.2.1.1 Continuous Conduction Mode
  • 6.2.1.2 Discontinuous Conduction Mode
  • 6.2.2 Self-Lift P/O Luo-Converter
  • 6.2.2.1 Continuous Conduction Mode
  • 6.2.2.2 Discontinuous Conduction Mode
  • 6.2.3 Reverse Self-Lift P/O Luo-Converter
  • 6.2.3.1 Continuous Conduction Mode
  • 6.2.3.2 Discontinuous Conduction Mode
  • 6.2.4 Self-Lift N/O Luo-Converter
  • 6.2.4.1 Continuous Conduction Mode
  • 6.2.4.2 Discontinuous Conduction Mode
  • 6.2.5 Reverse Self-Lift N/O Luo-Converter
  • 6.2.5.1 Continuous Conduction Mode
  • 6.2.5.2 Discontinuous Conduction Mode
  • 6.2.6 Self-Lift SEPIC
  • 6.2.6.1 Continuous Conduction Mode
  • 6.2.6.2 Discontinuous Conduction Mode
  • 6.2.7 Enhanced Self-Lift P/O Luo-Converter
  • 6.3 P/O Luo-Converters
  • 6.3.1 Relift Circuit
  • 6.3.1.1 Variations of Currents and Voltages
  • 6.3.2 Triple-Lift Circuit
  • 6.3.3 Quadruple-Lift Circuit
  • 6.3.4 Summary
  • 6.4 N/O Luo-Converters
  • 6.4.1 Relift Circuit
  • 6.4.2 N/O Triple-Lift Circuit
  • 6.4.3 N/O Quadruple-Lift Circuit
  • 6.4.4 Summary
  • 6.5 Modified P/O Luo-Converters
  • 6.5.1 Self-Lift Circuit
  • 6.5.2 Relift Circuit
  • 6.5.3 Multiple-Lift Circuit
  • 6.6 D/O Luo-Converters
  • 6.6.1 Self-Lift Circuit
  • 6.6.1.1 Positive Conversion Path
  • 6.6.1.2 Negative Conversion Path
  • 6.6.1.3 Discontinuous Conduction Mode
  • 6.6.2 Relift Circuit
  • 6.6.2.1 Positive Conversion Path
  • 6.6.2.2 Negative Conversion Path
  • 6.6.2.3 Discontinuous Conduction Mode
  • 6.6.3 Triple-Lift Circuit
  • 6.6.3.1 Positive Conversion Path
  • 6.6.3.2 Negative Conversion Path
  • 6.6.3.3 Discontinuous Mode
  • 6.6.4 Quadruple-Lift Circuit
  • 6.6.4.1 Positive Conversion Path
  • 6.6.4.2 Negative Conversion Path
  • 6.6.4.3 Discontinuous Conduction Mode
  • 6.6.5 Summary
  • 6.6.5.1 Positive Conversion Path
  • 6.6.5.2 Negative Conversion Path
  • 6.6.5.3 Common Parameters
  • 6.7 VL Cúk-Converters
  • 6.7.1 Elementary Self-Lift Cúk Circuit
  • 6.7.2 Developed Self-Lift Cúk Circuit
  • 6.7.3 Relift Cúk Circuit
  • 6.7.4 Multiple-Lift Cúk Circuit
  • 6.7.5 Simulation and Experimental Verification of an Elementary and a Developed Self-Lift Circuit
  • 6.8 VL SEPICs
  • 6.8.1 Self-Lift SEPIC
  • 6.8.2 Relift SEPIC
  • 6.8.3 Multiple-Lift SEPICs
  • 6.8.4 Simulation and Experimental Results of a Relift SEPIC
  • 6.9 Other D/O Voltage-Lift Converters
  • 6.9.1 Elementary Circuit
  • 6.9.2 Self-Lift D/O Circuit
  • 6.9.3 Enhanced Series D/O Circuits
  • 6.9.4 Simulation and Experimental Verification of an Enhanced D/O Self-Lift Circuit
  • 6.10 SC Converters
  • 6.10.1 One-Stage SC Buck Converter
  • 6.10.1.1 Operation Analysis
  • 6.10.1.2 Simulation and Experimental Results
  • 6.10.2 Two-Stage SC Buck–Boost Converter
  • 6.10.2.1 Operation Analysis
  • 6.10.2.2 Simulation and Experimental Results
  • 6.10.3 Three-Stage SC P/O Luo-Converter
  • 6.10.3.1 Operation Analysis
  • 6.10.3.2 Simulation and Experimental Results
  • 6.10.4 Three-Stage SC N/O Luo-Converter
  • 6.10.4.1 Operation Analysis
  • 6.10.4.2 Simulation and Experimental Results
  • 6.10.5 Discussion
  • 6.10.5.1 Voltage Drop across Switched Capacitors
  • 6.10.5.2 Necessity of the Voltage Drop across Switched Capacitors and Energy Transfer
  • 6.10.5.3 Inrush Input Current
  • 6.10.5.4 Power Switch-On Process
  • 6.10.5.5 Suppression of the Inrush and Surge Input Currents
  • Homework
  • Bibliography
  • Chapter 7 Superlift Converters and Ultralift Converter
  • 7.1 Introduction
  • 7.2 P/O SL Luo-Converters
  • 7.2.1 Main Series
  • 7.2.1.1 Elementary Circuit
  • 7.2.1.2 Relift Circuit
  • 7.2.1.3 Triple-Lift Circuit
  • 7.2.1.4 Higher Order Lift Circuit
  • 7.2.2 Additional Series
  • 7.2.2.1 Elementary Additional Circuit
  • 7.2.2.2 Relift Additional Circuit
  • 7.2.2.3 Triple-Lift Additional Circuit
  • 7.2.2.4 Higher Order Lift Additional Circuit
  • 7.2.3 Enhanced Series
  • 7.2.3.1 Elementary Enhanced Circuit
  • 7.2.3.2 Relift Enhanced Circuit
  • 7.2.3.3 Triple-Lift Enhanced Circuit
  • 7.2.3.4 Higher Order Lift Enhanced Circuit
  • 7.2.4 Re-Enhanced Series
  • 7.2.4.1 Elementary Re-Enhanced Circuit
  • 7.2.4.2 Relift Re-Enhanced Circuit
  • 7.2.4.3 Triple-Lift Re-Enhanced Circuit
  • 7.2.4.4 Higher Order Lift Re-Enhanced Circuit
  • 7.2.5 Multiple-Enhanced Series
  • 7.2.5.1 Elementary Multiple-Enhanced Circuit
  • 7.2.5.2 Relift Multiple-Enhanced Circuit
  • 7.2.5.3 Triple-Lift Multiple-Enhanced Circuit
  • 7.2.5.4 Higher Order Lift Multiple-Enhanced Circuit
  • 7.2.6 Summary of P/O SL Luo-Converters
  • 7.3 N/O SL Luo-Converters
  • 7.3.1 Main Series
  • 7.3.1.1 N/O Elementary Circuit
  • 7.3.1.2 N/O Relift Circuit
  • 7.3.1.3 N/O Triple-Lift Circuit
  • 7.3.1.4 N/O Higher Order Lift Circuit
  • 7.3.2 N/O Additional Series
  • 7.3.2.1 N/O Elementary Additional Circuit
  • 7.3.2.2 N/O Relift Additional Circuit
  • 7.3.2.3 Triple-Lift Additional Circuit
  • 7.3.2.4 N/O Higher Order Lift Additional Circuit
  • 7.3.3 Enhanced Series
  • 7.3.3.1 N/O Elementary Enhanced Circuit
  • 7.3.3.2 N/O Relift Enhanced Circuit
  • 7.3.3.3 N/O Triple-Lift Enhanced Circuit
  • 7.3.3.4 N/O Higher Order Lift Enhanced Circuit
  • 7.3.4 Re-Enhanced Series
  • 7.3.4.1 N/O Elementary Re-Enhanced Circuit
  • 7.3.4.2 N/O Relift Re-Enhanced Circuit
  • 7.3.4.3 N/O Triple-Lift Re-Enhanced Circuit
  • 7.3.4.4 N/O Higher Order Lift Re-Enhanced Circuit
  • 7.3.5 N/O Multiple-Enhanced Series
  • 7.3.5.1 N/O Elementary Multiple-Enhanced Circuit
  • 7.3.5.2 N/O Relift Multiple-Enhanced Circuit
  • 7.3.5.3 N/O Triple-Lift Multiple-Enhanced Circuit
  • 7.3.5.4 N/O Higher Order Lift Multiple-Enhanced Circuit
  • 7.3.6 Summary of N/O SL Luo-Converters
  • 7.4 P/O Cascaded Boost-Converters
  • 7.4.1 Main Series
  • 7.4.1.1 Elementary Boost Circuit
  • 7.4.1.2 Two-Stage Boost Circuit
  • 7.4.1.3 Three-Stage Boost Circuit
  • 7.4.1.4 Higher Stage Boost Circuit
  • 7.4.2 Additional Series
  • 7.4.2.1 Elementary Boost Additional (Double) Circuit
  • 7.4.2.2 Two-Stage Boost Additional Circuit
  • 7.4.2.3 Three-Stage Boost Additional Circuit
  • 7.4.2.4 Higher Stage Boost Additional Circuit
  • 7.4.3 Double Series
  • 7.4.3.1 Elementary Double Boost Circuit
  • 7.4.3.2 Two-Stage Double Boost Circuit
  • 7.4.3.3 Three-Stage Double Boost Circuit
  • 7.4.3.4 Higher Stage Double Boost Circuit
  • 7.4.4 Triple Series
  • 7.4.4.1 Elementary Triple Boost Circuit
  • 7.4.4.2 Two-Stage Triple Boost Circuit
  • 7.4.4.3 Three-Stage Triple Boost Circuit
  • 7.4.4.4 Higher Stage Triple Boost Circuit
  • 7.4.5 Multiple Series
  • 7.4.5.1 Elementary Multiple Boost Circuit
  • 7.4.5.2 Two-Stage Multiple Boost Circuit
  • 7.4.5.3 Three-Stage Multiple Boost Circuit
  • 7.4.5.4 Higher Stage Multiple Boost Circuit
  • 7.4.6 Summary of P/O Cascaded Boost Converters
  • 7.5 N/O Cascaded Boost Converters
  • 7.5.1 Main Series
  • 7.5.1.1 N/O Elementary Boost Circuit
  • 7.5.1.2 N/O Two-Stage Boost Circuit
  • 7.5.1.3 N/O Three-Stage Boost Circuit
  • 7.5.1.4 N/O Higher Stage Boost Circuit
  • 7.5.2 N/O Additional Series
  • 7.5.2.1 N/O Elementary Additional Boost Circuit
  • 7.5.2.2 N/O Two-Stage Additional Boost Circuit
  • 7.5.2.3 N/O Three-Stage Additional Boost Circuit
  • 7.5.2.4 N/O Higher Stage Additional Boost Circuit
  • 7.5.3 Double Series
  • 7.5.3.1 N/O Elementary Double Boost Circuit
  • 7.5.3.2 N/O Two-Stage Double Boost Circuit
  • 7.5.3.3 N/O Three-Stage Double Boost Circuit
  • 7.5.3.4 N/O Higher Stage Double Boost Circuit
  • 7.5.4 Triple Series
  • 7.5.4.1 N/O Elementary Triple Boost Circuit
  • 7.5.4.2 N/O Two-Stage Triple Boost Circuit
  • 7.5.4.3 N/O Three-Stage Triple Boost Circuit
  • 7.5.4.4 N/O Higher Stage Triple Boost Circuit
  • 7.5.5 Multiple Series
  • 7.5.5.1 N/O Elementary Multiple Boost Circuit
  • 7.5.5.2 N/O Two-Stage Multiple Boost Circuit
  • 7.5.5.3 N/O Three-Stage Multiple Boost Circuit
  • 7.5.5.4 N/O Higher Stage Multiple Boost Circuit
  • 7.5.6 Summary of N/O Cascaded Boost Converters
  • 7.6 UL Luo-Converter
  • 7.6.1 Operation of the UL Luo-Converter
  • 7.6.1.1 Continuous Conduction Mode
  • 7.6.1.2 Discontinuous Conduction Mode
  • 7.6.2 Instantaneous Values
  • 7.6.2.1 Continuous Conduction Mode
  • 7.6.2.2 Discontinuous Conduction Mode
  • 7.6.3 Comparison of the Gain to Other Converters’ Gains
  • 7.6.4 Simulation Results
  • 7.6.5 Experimental Results
  • 7.6.6 Summary
  • Homework
  • Bibliography
  • Chapter 8 Pulse-Width-Modulated DC/AC Inverters
  • 8.1 Introduction
  • 8.2 Parameters Used in PWM Operations
  • 8.2.1 Modulation Ratios
  • 8.2.1.1 Linear Range (ma ≤ 1.0)
  • 8.2.1.2 Overmodulation (1.0 < ma ≤ 1.27)
  • 8.2.1.3 Square Wave (Sufficiently Large ma > 1.27)
  • 8.2.1.4 Small mf (mf ≤ 21)
  • 8.2.1.5 Large mf (mf > 21)
  • 8.2.2 Harmonic Parameters
  • 8.3 Typical PWM Inverters
  • 8.3.1 Voltage Source Inverter
  • 8.3.2 Current Source Inverter
  • 8.3.3 Impedance Source Inverter
  • 8.3.4 Circuits of DC/AC Inverters
  • 8.4 Single-Phase Voltage Source Inverter
  • 8.4.1 Single-Phase Half-Bridge Voltage Source Inverter
  • 8.4.2 Single-Phase Full-Bridge Voltage Source Inverter
  • 8.5 Three-Phase Full-Bridge Voltage Source Inverter
  • 8.6 Three-Phase Full-Bridge Current Source Inverter
  • 8.7 Multistage PWM Inverter
  • 8.7.1 Unipolar PWM Voltage Source Inverter
  • 8.7.2 Multicell PWM Voltage Source Inverter
  • 8.7.3 Multilevel PWM Inverter
  • 8.8 Impedance-Source Inverters
  • 8.8.1 Comparison between Voltage Source Inverter and Current Source Inverter
  • 8.8.2 Equivalent Circuit and Operation
  • 8.8.3 Circuit Analysis and Calculations
  • 8.9 Extended Boost Impedance Source Inverters
  • 8.9.1 Introduction to Impedance Source Inverter and Basic Topologies
  • 8.9.2 Extended Boost Quasi–Impedance Source Inverter Topologies
  • 8.9.2.1 Diode-Assisted Extended Boost Quasi–Impedance Source Inverter Topologies
  • 8.9.2.2 Capacitor-Assisted Extended Boost Quasi–Impedance Source Inverter Topologies
  • 8.9.3 Simulation Results
  • Homework
  • Bibliography
  • Chapter 9 Multilevel and Soft-Switching DC/AC Inverters
  • 9.1 Introduction
  • 9.2 Diode-Clamped Multilevel Inverters
  • 9.3 Capacitor-Clamped Multilevel Inverters (Flying Capacitor Inverters)
  • 9.4 Multilevel Inverters Using H-Bridge Converters
  • 9.4.1 Cascaded Equal-Voltage Multilevel Inverters
  • 9.4.2 Binary Hybrid Multilevel Inverter
  • 9.4.3 Quasilinear Multilevel Inverter
  • 9.4.4 Trinary Hybrid Multilevel Inverter
  • 9.5 Investigation of Trinary Hybrid Multilevel Inverter
  • 9.5.1 Topology and Operation
  • 9.5.2 Proof That the Trinary Hybrid Multilevel Inverter Has the Greatest Number of Output Voltage Levels
  • 9.5.2.1 Theoretical Proof
  • 9.5.2.2 Comparison of Various Kinds of Multilevel Inverters
  • 9.5.2.3 Modulation Strategies for Trinary Hybrid Multilevel Inverter
  • 9.5.2.4 Regenerative Power
  • 9.5.3 Experimental Results
  • 9.5.3.1 Experiment to Verify the Step Modulation and the Virtual Stage Modulation
  • 9.5.3.2 Experiment to Verify the New Method of Eliminating the Regenerative Power
  • 9.5.4 Trinary Hybrid 81-Level Multilevel Inverters
  • 9.5.4.1 Space Vector Modulation
  • 9.5.4.2 DC Sources of H-Bridges
  • 9.5.4.3 Motor Controller
  • 9.5.4.4 Simulation and Experimental Results
  • 9.6 Other Kinds of Multilevel Inverters
  • 9.6.1 Generalized Multilevel Inverters
  • 9.6.2 Mixed-Level Multilevel Inverter Topologies
  • 9.6.3 Multilevel Inverters by Connection of Three-Phase Two-Level Inverters
  • 9.7 Soft-Switching Multilevel Inverters
  • 9.7.1 Notched DC-Link Inverters for Brushless DC Motor Drive
  • 9.7.1.1 Resonant Circuit
  • 9.7.1.2 Design Consideration
  • 9.7.1.3 Control Scheme
  • 9.7.1.4 Simulation and Experimental Results
  • 9.7.2 Resonant Pole Inverter
  • 9.7.2.1 Topology of the Resonant Pole Inverter
  • 9.7.2.2 Operation Principle
  • 9.7.2.3 Design Considerations
  • 9.7.2.4 Simulation and Experimental Results
  • 9.7.3 Transformer-Based Resonant DC-Link Inverter
  • 9.7.3.1 Resonant Circuit
  • 9.7.3.2 Design Consideration
  • 9.7.3.3 Control Scheme
  • 9.7.3.4 Simulation and Experimental Results
  • Homework
  • Bibliography
  • Chapter 10 Best Switching Angles to Obtain Lowest Total Harmonic Distortion for Multilevel DC/AC Inverters
  • 10.1 Introduction
  • 10.2 Methods for Determination of Switching Angle
  • 10.2.1 Main Switching Angles
  • 10.2.2 Equal-Phase Method
  • 10.2.3 Half-Equal-Phase Method
  • 10.2.4 Half-Height Method
  • 10.2.5 Feed-Forward Method
  • 10.2.6 Comparison of the Methods in Each Level
  • 10.2.7 Comparison of the Various Levels for Each Method
  • 10.2.8 Total Harmonic Distortion of Using Different Methods
  • 10.3 Best Switching Angles
  • 10.3.1 Using MATLAB to Obtain the Best Switching Angles
  • 10.3.2 Analysis of the Results of Best Switching Angles Calculation
  • 10.3.3 Output Voltage Waveform for Multilevel Inverters
  • Homework
  • Bibliography
  • Chapter 11 Traditional AC/AC Converters
  • 11.1 Introduction
  • 11.2 Single-Phase AC/AC Voltage-Regulation Converters
  • 11.2.1 Phase-Controlled Single-Phase AC/AC Voltage Controller
  • 11.2.1.1 Operation with R Load
  • 11.2.1.2 Operation with RL Load
  • 11.2.1.3 Gating Signal Requirements
  • 11.2.1.4 Operation with α < ϕ
  • 11.2.1.5 Power Factor and Harmonics
  • 11.2.2 Single-Phase AC/AC Voltage Controller with On/Off Control
  • 11.2.2.1 Integral Cycle Control
  • 11.2.2.2 PWM AC Chopper
  • 11.3 Three-Phase AC/AC Voltage-Regulation Converters
  • 11.3.1 Phase-Controlled Three-Phase AC Voltage Controllers
  • 11.3.2 Fully Controlled Three-Phase Three-Wire AC Voltage Controller
  • 11.3.2.1 Star-Connected Load with Isolated Neutral
  • 11.3.2.2 RL Load
  • 11.3.2.3 Delta-Connected R Load
  • 11.4 Cycloconverters
  • 11.4.1 Single-Phase/Single-Phase (Single-Phase Input to Single-Phase Output) Cycloconverters
  • 11.4.1.1 Operation with R Load
  • 11.4.1.2 Operation with RL Load
  • 11.4.2 Three-Phase Cycloconverters
  • 11.4.2.1 Three-Phase Three-Pulse Cycloconverter
  • 11.4.2.2 Three-Phase 6-Pulse and 12-Pulse Cycloconverters
  • 11.4.3 Cycloconverter Control Scheme
  • 11.4.3.1 Control Circuit Block Diagram
  • 11.4.3.2 Improved Control Schemes
  • 11.4.4 Cycloconverter Harmonics and Input Current Waveform
  • 11.4.4.1 Circulating-Current-Free Operations
  • 11.4.4.2 Circulating-Current Operation
  • 11.4.4.3 Other Harmonic Distortion Terms
  • 11.4.4.4 Input Current Waveform
  • 11.4.5 Cycloconverter Input Displacement/Power Factor
  • 11.4.6 Effect of Source Impedance
  • 11.4.7 Simulation Analysis of Cycloconverter Performance
  • 11.4.8 Forced-Commutated Cycloconverter
  • 11.5 Matrix Converters
  • 11.5.1 Operation and Control Methods of the Matrix Converter
  • 11.5.1.1 Venturini Method
  • 11.5.1.2 The Space Vector Modulation Method
  • 11.5.1.3 Control Implementation and Comparison of the Two Methods
  • 11.5.2 Commutation and Protection Issues in a Matrix Converter
  • Homework
  • Bibliography
  • Chapter 12 Improved AC/AC Converters
  • 12.1 DC-Modulated Single-Phase Single-Stage AC/AC Converters
  • 12.1.1 Bidirectional Exclusive Switches SM–Ss
  • 12.1.2 Mathematical Modeling of DC/DC Converters
  • 12.1.3 DC-Modulated Single-Stage Buck-Type AC/AC Converter
  • 12.1.3.1 Positive Input Voltage Half-Cycle
  • 12.1.3.2 Negative Input Voltage Half-Cycle
  • 12.1.3.3 Whole-Cycle Operation
  • 12.1.3.4 Simulation and Experimental Results
  • 12.1.4 DC-Modulated Single-Stage Boost-Type AC/AC Converter
  • 12.1.4.1 Positive Input Voltage Half-Cycle
  • 12.1.4.2 Negative Input Voltage Half-Cycle
  • 12.1.4.3 Whole-Cycle Operation
  • 12.1.4.4 Simulation and Experimental Results
  • 12.1.5 DC-Modulated Single-Stage Buck–Boost-Type AC/AC Converter
  • 12.1.5.1 Positive Input Voltage Half-Cycle
  • 12.1.5.2 Negative Input Voltage Half-Cycle
  • 12.1.5.3 Whole-Cycle Operation
  • 12.1.5.4 Simulation and Experimental Results
  • 12.2 Other Types of DC-Modulated AC/AC Converters
  • 12.2.1 DC-Modulated P/O Luo-Converter-Type AC/AC Converter
  • 12.2.2 DC-Modulated Two-Stage Boost-Type AC/AC Converter
  • 12.3 DC-Modulated Multiphase AC/AC Converters
  • 12.3.1 DC-Modulated Three-Phase Buck-Type AC/AC Converter
  • 12.3.2 DC-Modulated Three-Phase Boost-Type AC/AC Converter
  • 12.3.3 DC-Modulated Three-Phase Buck–Boost-Type AC/AC Converter
  • 12.4 Subenvelope Modulation Method to Reduce the Total Harmonic Distortion of AC/AC Matrix Converters
  • 12.4.1 Subenvelope Modulation Method
  • 12.4.1.1 Measure the Input Instantaneous Voltage
  • 12.4.1.2 Modulation Algorithm
  • 12.4.1.3 Improve Voltage Ratio
  • 12.4.2 24-Switch Matrix Converter
  • 12.4.3 Current Commutation
  • 12.4.3.1 Current Commutation between Two Input Phases
  • 12.4.3.2 Current Commutation-Related Three Input Phases
  • 12.4.4 Simulation and Experimental Results
  • 12.4.4.1 Simulation Results
  • 12.4.4.2 Experimental Results
  • Homework
  • Bibliography
  • Chapter 13 AC/DC/AC and DC/AC/DC Converters
  • 13.1 Introduction
  • 13.2 AC/DC/AC Converters Used in Wind Turbine Systems
  • 13.2.1 Review of Traditional AC/AC Converters
  • 13.2.2 New AC/DC/AC Converters
  • 13.2.2.1 AC/DC/AC Boost-Type Converters
  • 13.2.2.2 Three-Level Diode-Clamped AC/DC/AC Converter
  • 13.2.3 Two-Level AC/DC/AC ZSI
  • 13.2.4 Three-Level Diode-Clamped AC/DC/AC ZSI
  • 13.2.5 Linking a Wind Turbine System to a Utility Network
  • 13.3 DC/AC/DC Converters
  • 13.3.1 Review of Traditional DC/DC Converters
  • 13.3.2 Chopper-Type DC/AC/DC Converters
  • 13.3.3 Switched-Capacitor DC/AC/DC Converters
  • 13.3.3.1 Single-Stage Switched-Capacitor DC/AC/DC Converter
  • 13.3.3.2 Three-Stage Switched-Capacitor DC/AC/DC Converter
  • 13.3.3.3 Four-Stage Switched-Capacitor DC/AC/DC Converter
  • Homework
  • Bibliography
  • Index
Show More

Additional information

Veldu vöru

Rafbók til eignar

Reviews

There are no reviews yet.

Be the first to review “Power Electronics”

Netfang þitt verður ekki birt. Nauðsynlegir reitir eru merktir *

Aðrar vörur

2
    2
    Karfan þín
    Afghanistan
    Afghanistan
    Veldu vöru:

    Rafbók til eignar

    1 X 6.890 kr. = 6.890 kr.
    Armstrong's Handbook of Learning and Development
    Armstrong's Handbook of Learning and Development
    Veldu vöru:

    Rafbók til eignar

    1 X 8.190 kr. = 8.190 kr.